6-12 Shortest Path(Dijkstra算法)

Write a program to find the weighted shortest distances from any vertex to a given source vertex in a digraph. It is guaranteed that all the weights are positive.

Format of functions:

void ShortestDist( MGraph Graph, int dist[], Vertex S );

where MGraph is defined as the following:

typedef struct GNode *PtrToGNode;
struct GNode{
    int Nv;
    int Ne;
    WeightType G[MaxVertexNum][MaxVertexNum];
};
typedef PtrToGNode MGraph;

The shortest distance from V to the source S is supposed to be stored in dist[V]. If V cannot be reached from S, store -1 instead.

Sample program of judge:

#include <stdio.h>
#include <stdlib.h>

typedef enum {false, true} bool;
#define INFINITY 1000000
#define MaxVertexNum 10  /* maximum number of vertices */
typedef int Vertex;      /* vertices are numbered from 0 to MaxVertexNum-1 */
typedef int WeightType;

typedef struct GNode *PtrToGNode;
struct GNode{
    int Nv;
    int Ne;
    WeightType G[MaxVertexNum][MaxVertexNum];
};
typedef PtrToGNode MGraph;

MGraph ReadG(); /* details omitted */

void ShortestDist( MGraph Graph, int dist[], Vertex S );

int main()
{
    int dist[MaxVertexNum];
    Vertex S, V;
    MGraph G = ReadG();

    scanf("%d", &S);
    ShortestDist( G, dist, S );

    for ( V=0; V<G->Nv; V++ )
        printf("%d ", dist[V]);

    return 0;
}

/* Your function will be put here */

Sample Input (for the graph shown in the figure):
在这里插入图片描述

7 9
0 1 1
0 5 1
0 6 1
5 3 1
2 1 2
2 6 3
6 4 4
4 5 5
6 5 12
2

Sample Output:

-1 2 0 13 7 12 3 

我们先来看看Dijkstra算法的伪代码理解一下Dijkstra算法的思路:

//G为图的邻接矩阵,数组d为源点到达各点的最短路径长度,s为起点
Dijkstra(G,d[],s) {
    初始化;
    for(循环n次) {
        u = 使d[u]最小的还未被访问的顶点标号;
        记u已被访问;
        for(从u出发能到达的所有顶点v) {
            if(v未被访问 && 以u为中介点可以使s到顶点v的最短距离d[v]更优) {
                优化d[v];
            }
        }
    }
}

Dijkstra算法如下:

bool visited[1000] = {false};
void ShortestDist( MGraph Graph, int dist[], Vertex S ){
    for(int i = 0; i < Graph->Nv; i++) {
        dist[i] = INFINITY;
    }
    dist[S] = 0; // 起点到自身距离为0
    for(int i = 0; i < Graph->Nv; i++) { // 循环Nv次
        int u = -1, MIN = INFINITY; // u使dist[u]最小,MIN存放该最小的dist[u]
        for(int j = 0; j < Graph->Nv; j++) {
            if(visited[j]==false && dist[j] < MIN) {
                u = j;
                MIN = dist[j];
            }
        }
        if(u == -1) { // 如果u == -1说明起点与剩下顶点不连通
            for(int i = 0; i < Graph->Nv; i++) {
                if(dist[i] == INFINITY) dist[i] = -1;
            }
            return;
        }
        visited[u] = true;
        for(int v = 0; v < Graph->Nv; v++) {
            // v 未访问 && 以u为中介点可以使dist[v]更优
            if(visited[v] == false && dist[v] > dist[u] + Graph->G[u][v])
                dist[v] = dist[u] + Graph->G[u][v];
        }
    }
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
All-Pairs Shortest Path问题是指在一个带权有向图中,求出任意两个节点之间的最短路径。解决这个问题的算法称为All-Pairs Shortest Path算法。 常用的All-Pairs Shortest Path算法有Floyd-Warshall算法和Johnson算法。 Floyd-Warshall算法的基本思想是动态规划。用dist[i][j]表示从节点i到节点j的最短路径长度,用k表示中间节点,则有状态转移方程: ``` dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]) ``` 其中,dist[i][j]的初始值为节点i到节点j的边权,如果i和j之间没有边,则为正无穷。算法的核心是对k从1到n的循环,依次更新dist[i][j]的值,最终得到所有节点之间的最短路径长度。 Floyd-Warshall算法的时间复杂度为O(n^3),其中n为节点数,主要时间花费在三层循环上,实际应用中可以通过空间换时间的方式优化算法。 Johnson算法的基本思想是通过引入一个虚拟节点,并将其与所有节点之间的边权设为0,将问题转化为带权有向图中的单源最短路径问题。然后使用Bellman-Ford算法求出虚拟节点到其它所有节点的最短路径长度,再用求最短路径时的松弛操作更新所有边的边权,将问题转化为带权有向图中的多源最短路径问题。最后使用Dijkstra算法求出所有节点之间的最短路径长度。 Johnson算法的时间复杂度为O(n^2logn+m),其中n为节点数,m为边数,主要时间花费在Bellman-Ford算法Dijkstra算法上,实际应用中可以通过优化数据结构等方式优化算法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值