LRU(最近最少使用)算法实现

核心思想与基本思路

LRU(Least Recently Used)算法是一种缓存淘汰策略,其核心思想是淘汰最近最少使用的数据。

  • 最近使用原则:最近被访问的数据在未来被访问的概率更高,因此应保留在缓存中。
  • 淘汰机制:当缓存容量满时,淘汰最久未被访问的数据。

那LRU是怎么判断哪个数据是最近最少使用的呢?可能每个数据被访问的时候,记录一个时间戳或者顺序,然后淘汰最久没有被访问的那个。比如,如果有几个数据,每次访问的时候都更新它们的最近使用时间,当需要淘汰的时候,找时间最早的那个。那具体怎么实现呢?

举个例子吧,假设缓存容量是3,现在依次访问数据A、B、C。那么缓存中的顺序是A→B→C,链表头是C,尾是A。这时候缓存满了。如果再访问D,就需要淘汰最久未使用的A,然后加入D,链表变成D→C→B?或者我可能弄反了顺序?比如每次访问的时候,把节点移动到链表头部,所以最近访问的在头部,最久未使用的在尾部。假设现在缓存中有A、B、C,顺序是C是最近访问的,所以链表头是C,然后是B,然后是A。当访问B时,要把B移动到头部,这时候顺序变成B→C→A。这时候链表尾部是A。如果这时候要插入D,就淘汰A,然后D插入头部,变成D→B→C。对吗?

进一步地,我们可以将LRU算法想象成对一堆书进行操作。

对于需要访问某本书时,则将书堆中的某本书取出并放在最上面,当书的数量超过某个值时(也就是超过缓存容量时),我们则将最下面一本书抽出,并将新的书放在书堆的最上面。这也就是最简单的LRU算法基本原理。

在这里插入图片描述
有了上述思路,那么我们该如何实现LRU算法的getput 操作呢?
很简单

实现方式

使用哈希表和双向链表结合的数据结构

  • 哈希表:提供O(1)时间的键值查询,存储键到链表节点的映射。

  • 双向链表:维护数据的访问顺序,最近访问的节点靠近头部,最久未访问的节点靠近尾部。

操作步骤

  • 访问数据(get):
    若键存在,通过哈希表定位节点,将其移动到链表头部,表示最近使用,返回节点值。
    若键不存在,返回-1。

  • 插入数据(put):
    若键存在,更新值并将节点移动到链表头部。
    若键不存在,创建新节点并插入链表头部。若缓存已满,删除链表尾部节点(最久未使用),并在哈希表中移除对应键。

复杂度分析

  • 时间复杂度:get和put操作均为O(1)。

  • 空间复杂度:O(capacity),用于存储哈希表和链表。

为了便于双向链表的维护与访问,我们可以设置一个头结点,当需要get和put书堆中的某本书时,直接用头插法将结点移动到第一个结点即可。
实现代码如下:

class Node {
public:
    int key; 
    int value;
    Node *next;
    Node *prev;
    Node(int k = 0, int v = 0) : key(k), value(v) {}
};
class LRUCache {
private:
    int capacity;
    Node *cache; // 头结点
    unordered_map <int, Node*> key_to_node;

    void RemoveNode(int key) {
        Node *node = key_to_node[key];
        node -> prev -> next = node -> next;
        node -> next -> prev = node -> prev;
        key_to_node.erase(key);
        delete node;
    }

    void PushFront(Node *node) { // 头插法
        node -> next = cache -> next;
        node -> prev = cache;
        cache -> next -> prev = node;
        cache -> next = node;
        key_to_node[node -> key] = node;
    }
public:
    LRUCache(int capacity) {
        this -> capacity = capacity;
        cache = new Node;
        cache -> next = cache -> prev = cache;
    }
    
    int get(int key) {
        if(key_to_node.find(key) != key_to_node.end()) {
            int value = key_to_node[key] -> value;
            RemoveNode(key);
            Node *node = new Node(key, value);
            PushFront(node);
            return value;
        }
        return -1; 
    }
    
    void put(int key, int value) {
        auto find_key = key_to_node.find(key);
        Node *node = new Node(key, value);
        if(find_key == key_to_node.end()) {
            if(key_to_node.size() < capacity) {
                PushFront(node);
            } else {
                RemoveNode(cache -> prev -> key);
                PushFront(node);
            }
        } else { // 如果key值已经存在,就变更value值再插入到第一个节点中。
            RemoveNode(key);
            PushFront(node);
        }
    }
};

/**
 * Your LRUCache object will be instantiated and called as such:
 * LRUCache* obj = new LRUCache(capacity);
 * int param_1 = obj->get(key);
 * obj->put(key,value);
 */
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值