书生*浦语大模型第一个学习笔记

大模型全链路开源体系学习笔记

发展历程

从2006年深度学习理论突破,到专用模型最后到目前的通用大模型。

专用模型也指目前普遍应用的小模型,是指应用于一个专业领域的模型。

通用大模型是一个模型应用多种任务,多种模态。

书生*浦语2.0体系

提供了两种开源的大模型:

7B: 为轻量级的研究和引用提供一个轻便但性能不错的模型

20B:模型的综合能力较强,可有效支持更加复杂的使用场景。

7B和20B每个规格都包含了是哪个模型版本:

  • InternLM2-Base: 高质量和具有很轻可塑性的模型基座,是模型进行深度领域适配的高质量起点。

  • IntrenLM2 : 在Base的基础上,在多个能力放行惊醒了强化, 在评测中成绩优异。推荐基座

  • InternLM2-Chat: 在Base的基础上,进行了SFT和RLHF, 面向对话交互进行了优化。

    • SFT(Supervised Fine-Tuning)是一种有监督的学习方式,给定输入和输出,模型来学习从输入到输出的这种映射关系。

    • RLHF 会先训练一个reward model,让reward model去学习什么要的回复是更符合人类偏好,再让这个reward model去指导大模型进行学习,从而引导大模型输出更符合人类标注的回复。

InternLM2优化:

IntrenLM2的亮点:

性能方面:

工具调用和数据计算能力也有所增强,配合代码解析器更好。

从模型到应用

选型流程:

模型选型在条件不满足情况下尽可能结合模型评测,选择几款合适的进行。

书生开源体系:

综合评测:

部署解决方案:

开源智能体:

智能体工具箱AgentLego:

  • 支持多种主流智能体系统: LangChain, Transformers Agent, Lagent

  • 灵活的多模态工具调用接口,

  • 一键式远程工具部署。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值