大模型全链路开源体系学习笔记
发展历程
从2006年深度学习理论突破,到专用模型最后到目前的通用大模型。
专用模型也指目前普遍应用的小模型,是指应用于一个专业领域的模型。
通用大模型是一个模型应用多种任务,多种模态。
书生*浦语2.0体系
提供了两种开源的大模型:
7B: 为轻量级的研究和引用提供一个轻便但性能不错的模型
20B:模型的综合能力较强,可有效支持更加复杂的使用场景。
7B和20B每个规格都包含了是哪个模型版本:
-
InternLM2-Base: 高质量和具有很轻可塑性的模型基座,是模型进行深度领域适配的高质量起点。
-
IntrenLM2 : 在Base的基础上,在多个能力放行惊醒了强化, 在评测中成绩优异。推荐基座
-
InternLM2-Chat: 在Base的基础上,进行了SFT和RLHF, 面向对话交互进行了优化。
-
SFT(Supervised Fine-Tuning)是一种有监督的学习方式,给定输入和输出,模型来学习从输入到输出的这种映射关系。
-
RLHF 会先训练一个reward model,让reward model去学习什么要的回复是更符合人类偏好,再让这个reward model去指导大模型进行学习,从而引导大模型输出更符合人类标注的回复。
-
InternLM2优化:
IntrenLM2的亮点:
性能方面:
工具调用和数据计算能力也有所增强,配合代码解析器更好。
从模型到应用
选型流程:
模型选型在条件不满足情况下尽可能结合模型评测,选择几款合适的进行。
书生开源体系:
综合评测:
部署解决方案:
开源智能体:
智能体工具箱AgentLego:
-
支持多种主流智能体系统: LangChain, Transformers Agent, Lagent
-
灵活的多模态工具调用接口,
-
一键式远程工具部署。