5.1 使用word2vector表示词向量

读取分词后的评论,将分词的结果放在list中,每条评论为一个list,所有的评论放入list_all中。

from gensim.models import Word2Vec
import math

stopwords = None
with open('../data/stopwords.data', 'r', encoding='utf-8') as fr:
    stopwords = fr.readlines()
list_all = []
list_temp = []
with open('../data/good_seg.txt', 'r', encoding='utf-8') as fr:
    lines = fr.readlines()
    for line in lines:
        line = line.strip()
        # print(line)
        for w in stopwords:
            # print(word)
            if w.strip() == '/':
                continue
            line = line.replace(w.strip(), '')
        list_temp = line.split("/")
        while '' in list_temp:
            list_temp.remove('')
        list_all.append(list_temp)
    print(list_all)
# 利用语料训练模型
model = Word2Vec(list_all, window=5, min_count=1)
y2 = model.most_similar("电影", topn=5)  # 20个最相关的
for item in y2:
    print(item[0], item[1])
for a in X:
     print(a)

运行结果:每个词向量为100维

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值