0 前言
NLP萌新一枚,经常看到word embedding与word2vec两个关键词,根据我之前掌握的机器学习的皮毛,我觉得这个词组的意思都是将自然语言表示成向量的形式。但是他们有什么区别呢,今天我查了一些资料,在此做一下记录。
1 区别和联系
word embedding是指词向量,是一个将词向量化的概念,来源于Bengio的论文《Neural probabilistic language models》,中文译名有"词嵌入"。word2vec则是将词映射成词向量的一种具体的技术。几个比较有名的word embedding方法包括:
word2vec (Google), GloVe, wordRank, FastText (Facebook)。区别的话,就是一个是概念,一个是实现手段。
word2vec是谷歌提出一种word embedding 的工具或者算法集合,采用了两种模型(CBOW与skip-gram模型)与两种方法(负采样与层次softmax方法)的组合,比较常见的组合为 skip-gram+负采样方法。
word embedding是一种对单词从稀疏(one hot vector)空间映射到稠密(vector)空间技术的统称,这个映射矩阵更多时候应用方式是根据具体的task end2end的学习。
word2vec是embedding的一种,其目标是根据word 间的共现信息来学习word onehot表达到vector 的映射矩阵,用ngram信息来监督。
word2vec不关心后续的应用场景,其学习到的是就是根据共现信息得到的单词的表达,在不同的子task间都会有一定效果。而end2end训练的embedding其和具体子task的学习目标紧密相关 直接迁移到另一个子task的能力非常弱
有关word2vec与word embedding的详细学习参考:
word2vec中的数学原理详解:word2vec 中的数学原理详解(一)目录和前言
对于起源与其他的word embedding方法可以查看 Deep Learning in NLP (一)词向量和语言模型
原文来源:
作者:周国睿
链接:https://www.zhihu.com/question/53354714/answer/211880226
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
作者:漆鹏
链接:https://www.zhihu.com/question/53354714/answer/134664719
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。