图像均值与像素均值的区别

1.什么是均值?
对于每帧图像来说,均值分为两种:image mean 和 pixel mean。

image mean: 
简单的说,读入一张彩色图像,假设是(N*N*3),这时候,求出image mean的话,就也是N*N*3,相当于把所有训练集在同一个空间位置上的像素的对应通道求了均值,也就是caffe里生成的mean.binaryproto文件,

pixel mean: 
而pixel mean的话,其实是把训练集里面所有图片的所有R通道像素,求了均值,G,B通道类似,也就是不考虑空间位置了。所以求出来就是三个数值(R_mean,G_mean,B_mean),所以其实就是把image mean再求了一次均值。1

2.为什么要去均值?
2.1.从主成分分析(PCA)入手解释
说白了就是数据特征标准化。

特征标准化指的是(独立地)使得数据的每一个维度具有零均值和单位方差。这是归一化中最常见的方法并被广泛地使用(例如,在使用支持向量机(SVM)时,特征标准化常被建议用作预处理的一部分)。在实际应用中,特征标准化的具体做法是:首先计算每一个维度上数据的均值(使用全体数据计算),之后在每一个维度上都减去该均值。下一步便是在数据的每一维度上除以该维度上数据的标准差。

对于自然图像,更多的是做图像零均值化,并不需要估计样本的方差。这是因为在自然图像上进行训练时,对每一个像素单独估计均值和方差意义不大,因为(理论上)图像任一部分的统计性质都应该和其它部分相同,图像的这种特性被称作平稳性(stationarity)。

对于图像,这种归一化可以移除图像的平均亮度值 (intensity)。很多情况下我们对图像的照度并不感兴趣,而更多地关注其内容,比如在对象识别任务中,图像的整体明亮程度并不会影响图像中存在的是什么物体。这时对每个数据点移除像素的均值是有意义的。 2

2.2.从深度学习反向传播计算入手
了解到基本在deep learning中只要你是使用gradient descent来训练模型的话都要在数据预处理步骤进行数据归一化。当然这也是有一定原因的。

根据公式 


如果输入层 x 很大,在反向传播时候传递到输入层的梯度就会变得很大。梯度大,学习率就得非常小,否则会越过最优。在这种情况下,学习率的选择需要参考输入层数值大小,而直接将数据归一化操作,能很方便的选择学习率。而且受 x 和 w 的影响,各个梯度的数量级不相同,因此,它们需要的学习率数量级也就不相同。对 w1 适合的学习率,可能相对于 w2 来说会太小,如果仍使用适合 w1 的学习率,会导致在 w2 方向上走的非常慢,会消耗非常多的时间,而使用适合 w2 的学习率,对 w1 来说又太大,搜索不到适合 w1 的解。3

3.代码
1.图像去均值(image mean)

# Normalize the data: subtract the mean image
X_train = sum_img
print ("减去均值之前,X_train的第一幅图像的RGB通道的第一个通道的图像数值32*32:")
print (X_train[0][0])
mean_image = np.mean(X_train, axis=0)    
#shape=(3,32, 32) 这里axis=0表示按照列算均值,在这里是将所有图像的R图上的每个像素点的数值取平均,G,B通道同理,这里是image mean。
X_train_m = X_train - mean_image

print ("-----------------------------------------------")
print ("mean_image的形状以及数值")
print (mean_image.shape)
print (mean_image[0])
print ("-----------------------------------------------")
print ("减去均值之后,X_train的第一幅图像的RGB通道的第一个通道的图像数值32*32:")
print (X_train_m[0][0])

输出:

减去均值之前,X_train的第一幅图像的RGB通道的第一个通道的图像数值32*32:
[[ 62  61  60 ...,  64  82  62]
 [ 62  63  61 ...,  77 114  64]
 [ 67  78 115 ..., 100 119  63]
 ..., 
 [161 159 159 ..., 152 157 156]
 [163 161 162 ..., 162 161 161]
 [169 167 167 ..., 167 167 167]]
-----------------------------------------------
mean_image的形状以及数值
(3, 32, 32)
[[ 121.33333333  114.66666667  113.83333333 ...,  134.          135.5
   130.66666667]
 [ 112.33333333  111.5         110.33333333 ...,  134.16666667
   136.16666667  125.16666667]
 [ 113.33333333  112.66666667  119.83333333 ...,  134.16666667  137.5
   123.66666667]
 ..., 
 [ 135.66666667  131.66666667  129.66666667 ...,   99.33333333   84.           86.        ]
 [ 129.16666667  125.5         128.5        ...,  112.16666667
    99.66666667  101.        ]
 [ 129.83333333  125.66666667  127.66666667 ...,  122.16666667
   112.33333333  109.66666667]]
-----------------------------------------------
减去均值之后,X_train的第一幅图像的RGB通道的第一个通道的图像数值32*32:
[[-59.33333333 -53.66666667 -53.83333333 ..., -70.         -53.5
  -68.66666667]
 [-50.33333333 -48.5        -49.33333333 ..., -57.16666667 -22.16666667
  -61.16666667]
 [-46.33333333 -34.66666667  -4.83333333 ..., -34.16666667 -18.5
  -60.66666667]
 ..., 
 [ 25.33333333  27.33333333  29.33333333 ...,  52.66666667  73.          70.        ]
 [ 33.83333333  35.5         33.5        ...,  49.83333333  61.33333333
   60.        ]
 [ 39.16666667  41.33333333  39.33333333 ...,  44.83333333  54.66666667
   57.33333333]]

2.像素均值(pixel mean)
import os
import cv2
from numpy import *

img_dir='.\img'
img_list=os.listdir(img_dir)
img_size=224
sum_r=0
sum_g=0
sum_b=0
count=0

for img_name in img_list:
    img_path=os.path.join(img_dir,img_name)
    img=cv2.imread(img_path)
    img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
    img=cv2.resize(img,(img_size,img_size))
    sum_r=sum_r+img[:,:,0].mean()
    sum_g=sum_g+img[:,:,1].mean()
    sum_b=sum_b+img[:,:,2].mean()
    count=count+1

sum_r=sum_r/count
sum_g=sum_g/count
sum_b=sum_b/count
img_mean=[sum_r,sum_g,sum_b]
print (img_mean)
输出:

[122.30835127019559, 115.90339671024662, 99.094251567814624]
代码请访问我的github:csdn/Image-mean-data/ 
我的代码参考了caffe的计算图像均值(image mean)方法和计算像素均值(pixel mean)4

caffe训练的时候减去pixel-mean和image-mean的区别 ↩
Caffe学习系列——工具篇:计算数据集的图像均值 ↩
深度学习历程之图片的预处理为什么要减去图片的平均值 ↩
计算图像均值 ↩

原文:https://blog.csdn.net/weixin_37251044/article/details/81157344 
 

  • 1
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
对于计算机专业的学生而言,参加各类比赛能够带来多方面的益处,具体包括但不限于以下几点: 技能提升: 参与比赛促使学生深入学习和掌握计算机领域的专业知识与技能,如编程语言、算法设计、软件工程、网络安全等。 比赛通常涉及实际问题的解决,有助于将理论知识应用于实践中,增强问题解决能力。 实践经验: 大多数比赛都要求参赛者设计并实现解决方案,这提供了宝贵的动手操作机会,有助于积累项目经验。 实践经验对于计算机专业的学生尤为重要,因为雇主往往更青睐有实际项目背景的候选人。 团队合作: 许多比赛鼓励团队协作,这有助于培养学生的团队精神、沟通技巧和领导能力。 团队合作还能促进学生之间的知识共享和思维碰撞,有助于形成更全面的解决方案。 职业发展: 获奖经历可以显著增强简历的吸引力,为求职或继续深造提供有力支持。 某些比赛可能直接与企业合作,提供实习、工作机会或奖学金,为学生的职业生涯打开更多门路。 网络拓展: 比赛是结识同行业人才的好机会,可以帮助学生建立行业联系,这对于未来的职业发展非常重要。 奖金与荣誉: 许多比赛提供奖金或奖品,这不仅能给予学生经济上的奖励,还能增强其成就感和自信心。 荣誉证书或奖状可以证明学生的成就,对个人品牌建设有积极作用。 创新与研究: 参加比赛可以激发学生的创新思维,推动科研项目的开展,有时甚至能促成学术论文的发表。 个人成长: 在准备和参加比赛的过程中,学生将面临压力与挑战,这有助于培养良好的心理素质和抗压能力。 自我挑战和克服困难的经历对个人成长有着深远的影响。 综上所述,参加计算机领域的比赛对于学生来说是一个全面发展的平台,不仅可以提升专业技能,还能增强团队协作、沟通、解决问题的能力,并为未来的职业生涯奠定坚实的基础。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值