2021-5-22 有限元方法从0开始学习笔记 第五天 (适应性逼近简介)

周末了, 早上好, 继续往下看, 给出参考资料如下:
Brenner S, Scott R. The mathematical theory of finite element methods[M]. Springer Science & Business Media, 2007.
第十三页

上一次内容回忆

2021-5-21 有限元方法从0开始学习笔记 第四天 (局部误差)
给出了逐点误差估计,但是看的不是很懂, 还有一个地方没有推过去, 打算先放着.

0.8 适应性逼近

本章对适应性逼近方法的观点以及适应性方法的好处进行简单的介绍, 在许多情况下, 微分方程的解即使是在有限区域内也会剧烈变换, 对于这种问题, 使网格去适应解的变化是非常有意义的. 对于一个问题, 利用通用的网格去逼近解, 与使用自适应网格去逼近解, 其逼近指数之间的差异将会是巨大的. 在本章讲会给出一个简答的逼近问题来解释这个结果.
下面考虑导数可积的一元函数的逼近问题, 注意, 这比前面的对函数的要求要弱, 并且我们希望考虑 在比较强的范数下的逼近性质, 考虑在空间 S Δ S_{\Delta} SΔ 上利用分片常数来对一个函数进行逼近, 其中, Δ \Delta Δ 表示如下网格剖分:
Δ = { x 0 , x 1 , ⋯   , x n : 0 = x 0 < x 1 < ⋯ < x n = 1 } \Delta = \left\lbrace x_{0}, x_{1}, \cdots, x_{n} : 0 = x_{0} < x_{1} < \cdots < x_{n} = 1 \right\rbrace Δ={x0,x1,,xn:0=x0<x1<<xn=1}
考虑如下表达式:
inf ⁡ v ∈ S Δ ∥ u − v ∥ m a x ≤ C n − p ∫ 0 1 ∣ u ′ ( x ) ∣ d x \inf\limits_{v \in S_{\Delta}} \| u - v \|_{max} \leq Cn^{-p} \int_{0}^{1} \left| u^{'}(x) \right| dx vSΔinfuvmaxCnp01u(x)dx
考虑固定的网格,问 是否上式能够对于一切的 p p p, 以及一且的 u u u, 都成立? 显然, 这是不显示的, 实际上对于固定的网格, 要想使上式对于一切 u u u 都成立, 只能有 p = 0 p = 0 p=0. 因为不管对于何种网格, 可以取以下特殊的 u u u, 使得上面的 p = 0 p = 0 p=0.
u ( x ) = { x − x 0 x 1 − x 0 , x ∈ [ x 0 , x 1 ] 1 , . else u(x) = \begin{cases} \dfrac{x - x_{0}}{x_{1} - x_{0}}, \quad x \in [x_{0}, x_{1}] \\ 1 ,.\quad \text{else} \end{cases} u(x)=x1x0xx0,x[x0,x1]1,.else
显然, 有:
inf ⁡ v ∈ S Δ ∥ u − v ∥ m a x = 1 2 \inf\limits_{v \in S_{\Delta}} \| u - v \|_{max} = \dfrac{1}{2} vSΔinfuvmax=21
v v v 满足以下条件即可:
v ( x ) = { 1 2 , x ∈ [ x 0 , x 1 ] 1 , else v(x) = \begin{cases} \dfrac{1}{2}, \quad x\in[x_{0}, x_{1}] \\ 1, \quad \text{else} \end{cases} v(x)=21,x[x0,x1]1,else
注意到还有: ∫ 0 1 ∣ u ′ ( x ) ∣ d x = 1 \int_{0}^{1}|u'(x)| dx = 1 01u(x)dx=1, 从而可知如果上式想成立, 只能有 p = 0 p = 0 p=0, 实际上, 对于任意满足导数可积分的 u u u, 取上面的 C = 1 , p = 0 , v ≡ 0 C= 1, p = 0, v\equiv 0 C=1,p=0,v0, 注意到 u ( x ) = ∫ 0 x u ′ ( y ) d y u(x) = \int_{0}^{x} u^{'}(y) dy u(x)=0xu(y)dy, 则马上可以知道上式成立, 因此一般的, 对于固定的网格, 要想上式子对于所有满足模型问题边界条件的 u u u 都成立, 只能有 p = 0 p = 0 p=0.

下面从另一个角度考虑问题
从上面看到, 对于一个固定的网格, 如果想要对于所有的函数, 使得上面的不等式估计成立, 那么只能有 p = 0 p = 0 p=0, 下面考虑对一个特定的函数 u u u, 问能不能找到合适的网格, 使得上面的不等式有一个稍微好点的估计, (比如, 让 p p p 能够稍微取得大一点?)
下面考虑对满足 ∫ 0 1 ∣ u ′ ( x ) ∣ d x = 1 \int_{0}^{1} \left|u^{'}(x)\right| dx = 1 01u(x)dx=1 的函数进行逼近, 下面构造一个合适的网格剖分, 使得上面的 p p p 能够增大, 首先定义如下函数:
ϕ ( x ) = ∫ 0 x ∣ u ′ ( t ) ∣ d t \phi(x) = \int_{0}^{x}\left| u^{'}(t) \right| dt ϕ(x)=0xu(t)dt
可以知道, ϕ ( x ) \phi(x) ϕ(x), 则容易看到, ϕ ( 0 ) = 0 , ϕ ( 1 ) = 1 \phi(0) = 0, \quad \phi(1) = 1 ϕ(0)=0,ϕ(1)=1 以及 ϕ ( x ) \phi(x) ϕ(x) 是一个单调函数, 则存在中间点 x i , x_{i}, xi,, 使得 ϕ ( x i ) = i n , ( i = 0 , 1 , ⋯   , n ) \phi(x_{i}) = \dfrac{i}{n}, (i = 0,1,\cdots, n) ϕ(xi)=ni,(i=0,1,,n) 并且利用函数的单调性质, 可以知道, x i < x i + 1 x_{i} < x_{i+1} xi<xi+1, 取这样的剖分, 则这样的剖分将会满足:
∫ x i − 1 x i ∣ u ′ ( y ) ∣ d t = ϕ ( x i ) − ϕ ( x i − 1 ) = 1 n \int_{x_{i-1}}^{x_{i}} \left| u^{'}(y) \right| dt = \phi(x_{i}) - \phi(x_{i-1}) = \dfrac{1}{n} xi1xiu(y)dt=ϕ(xi)ϕ(xi1)=n1
并且, 为了逼近函数 u u u, 取分片常值函数: c i = u ( x i − 1 ) c_{i} = u\left(x_{i-1}\right) ci=u(xi1) 则马上可以进行如下估计:
∣ u ( x ) − c i ∣ = ∣ u ( x i ) − u ( x i − 1 ) ∣ = ∣ ∫ x i − 1 x i u ′ ( x ) d x ∣ ≤ ∫ x i − 1 x i ∣ u ′ ( x ) ∣ d x = 1 n \begin{aligned} \left| u(x) - c_{i} \right| &= \left| u(x_{i}) - u(x_{i-1}) \right| = \left| \int_{x_{i-1}}^{x_{i}}u^{'}(x) dx \right| \\ & \leq \int_{x_{i-1}}^{x_{i}} \left| u^{'}(x) \right| dx = \dfrac{1}{n} \end{aligned} u(x)ci=u(xi)u(xi1)=xi1xiu(x)dxxi1xiu(x)dx=n1
从而, 对于这次可以知道, 上面那个估计对 p = 1 p = 1 p=1, C = 1 C = 1 C=1 成立, (至少当函数 u ( x ) u(x) u(x) 满足) ∫ 0 1 ∣ u ′ ( x ) ∣ d x = 1 \int_{0}^{1} \left| u^{'}(x) \right| dx = 1 01u(x)dx=1 的时候.
更一般的情形
上面, 对于满足条件 ∫ 0 1 ∣ u ′ ( x ) ∣ d x = 1 \int_{0}^{1} \left| u^{'}(x) \right| dx = 1 01u(x)dx=1 的函数进行逼近时, 可以找到合适的网格剖分, 使得在该条件下, 估计
inf ⁡ v ∈ S Δ ∥ u − v ∥ m a x ≤ C n − p ∫ 0 1 ∣ u ′ ( x ) ∣ d x \inf\limits_{v \in S_{\Delta}} \| u - v \|_{max} \leq Cn^{-p} \int_{0}^{1} \left| u^{'}(x) \right| dx vSΔinfuvmaxCnp01u(x)dx
能够对 p = 1 , C = 1 p = 1, C = 1 p=1,C=1 的时候成立.对于更一般的目标函数 u u u, 定义如下逼近商(中文直译, 不知道实际的是不是这样翻译的). 逼近商是关于网格剖分和目标逼近函数的函数
Q ( u , Δ t ) = inf ⁡ v ∈ S Δ ∥ u − v ∥ m a x ∫ 0 1 ∣ u ′ ( x ) ∣ d x \color{#00CED1}{Q(u, \Delta t) = \dfrac{\inf\limits_{v \in S_{\Delta}}\| u - v \|_{max}}{\int_{0}^{1} \left| u^{'}(x)\right| dx}} Q(u,Δt)=01u(x)dxvSΔinfuvmax
其中, u u u 满足 0 < ∫ 0 1 ∣ u ′ ( x ) ∣ d x < ∞ 0 < \int_{0}^{1} \left| u^{'}(x) \right|dx < \infty 0<01u(x)dx<, Δ \Delta Δ 为给定的网格剖分, 则前面的两个结果分别说明了:
∀ Δ , ∃ u    s . t . ,    Q ( u , Δ ) ≥ 1 2 , \forall \Delta, \quad \exists u \ \ s.t., \ \ Q(u, \Delta) \geq \dfrac{1}{2}, Δ,u  s.t.,  Q(u,Δ)21,
∀ i , ∃ Δ , size ( Δ ) = n    s . t . ,    Q ( u , Δ ) ≤ 1 n . \forall i, \quad \exists \Delta , \quad \text{size}(\Delta) = n\ \ s.t., \ \ Q(u, \Delta) \leq \dfrac{1}{n}. i,Δ,size(Δ)=n  s.t.,  Q(u,Δ)n1.
其中, size ( Δ ) (\Delta) (Δ) 表示网格的剖分段数.
上面的结果表明了使用一个通用的网格来逼近解, 以及使用适应性网格来针对特殊的问题进行逼近, 两者所得到的结果有着巨大的差异. 关于适应性逼近的方法, 后面也会一步步慢慢介绍.
今天就到这里把, 周末愉快, 慢慢看书.
后面会写一个编程的文档, 所以下一次发是在把编程文档写完之后了, 然后将开始一些泛函基础, 后面会很快看二维有限元以及二维问题

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值