Hessian笔记

Hessian笔记
最近做了一些DIS光流的工作。过程中文献里提到了一个Hessian矩阵,但其表达式又与二阶导不同,所以这里是个疑惑点,做个记录。如链接:
http://image.sciencenet.cn/olddata/kexue.com.cn/upload/blog/file/2010/9/2010929122517964628.pdf

同时还有: “根据费舍尔信息矩阵的定义,梯度的外积矩阵是 Hessian 矩阵的一个渐近无偏估计:”
而在图像中,梯度的外积矩阵会遇到的比较多,需要注意两者是有区别的。

Kroeger T , Timofte R , Dai D , et al. Fast Optical Flow using Dense Inverse Search[J]. 2016.
Baker S , Matthews I . Lucas-Kanade 20 Years On: A Unifying Framework[J]. International Journal of Computer Vision, 2004, 56(3):221-255.
Shi J. Good features to track[C]//1994 Proceedings of IEEE conference on computer vision and pattern recognition. IEEE, 1994: 593-600.

Wronski B, Garcia-Dorado I, Ernst M, et al. Handheld multi-frame super-resolution[J]. ACM Transactions on Graphics (TOG), 2019, 38(4): 1-18.
Takeda H, Farsiu S, Milanfar P. Kernel regression for image processing and reconstruction[J]. IEEE Transactions on image processing, 2007, 16(2): 349-366.
(这里还有一篇相关博士论文)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值