拉普拉斯金字塔融合

拉普拉斯金字塔融合

  图像金字塔方法的原理是:将参加融合的的每幅图像分解为多尺度的金字塔图像序列,将低分辨率的图像在上层,高分辨率的图像在下层,上层图像的大小为前一层图像大小的1/4。层数为0,1,2……N。将所有图像的金字塔在相应层上以一定的规则融合,就可得到合成金字塔,再将该合成金字塔按照金字塔生成的逆过程进行重构,得到融合金字塔。这个总的思路就是一下所有基于金字塔融合的算法过程,不同点就在于分解构造的金字塔不同,每层的融合规则不一样,重构的方法不同而已。金字塔方法最先实现了这种思想,之后小波方法进一步完善和发展了这种多尺度融和的思想。

2.1、原理阐述

(1)高斯金字塔

  高斯金字塔是最基本的图像塔。首先将原图像作为最底层图像G0(高斯金字塔的第0层),利用高斯核(5*5)对其进行卷积,然后对卷积后的图像进行下采样(去除偶数行和列)得到上一层图像G1,将此图像作为输入,重复卷积和下采样操作得到更上一层图像,反复迭代多次,形成一个金字塔形的图像数据结构,即高斯金字塔。

高斯金字塔的构建过程为:假设高斯金字塔的第L层图像为Gl:

式中N为高斯金字塔顶层层号,Rl和Cl分别为高斯金字塔第l层的行数和列数W(m,n)是一个二维可分离的5*5窗口函数,表达式为:

  由G0,G1,,,GN,就构成了一个高斯金字塔,其中G0为高斯金字塔的底层(与原图像相同)GN为金字塔的顶层。由此可见高斯金字塔的当前层图像就是对其前一层图像首先进行高斯低通滤波,然后再进行隔行和隔列的降2采样而生成的。前一层图像大小依次为当前层图像大小的4倍。

Opencv中使用pyrdown函数就可以获得高斯金字塔。

(2)拉普拉斯金字塔

  在高斯金字塔的运算过程中,图像经过卷积和下采样操作会丢失部分高频细节信息。为描述这些高频信息,人们定义了拉普拉斯金字塔(Laplacian Pyramid, LP)。用高斯金字塔的每一层图像减去其上一层图像上采样并高斯卷积之后的预测图像,得到一系列的差值图像即为 LP 分解图像。

将Gl内插方法得到放大图像*Gl,使*Gl的尺寸与*Gl-1的尺寸相同,即放大算子Expand

该式子实现两个步骤:在偶数行和列插入0,然后使用下采样中的高斯核进行滤波处理,得到和l-1层一样大小的图像。

 

  N为拉普拉斯金字塔顶层的层号LPl是拉普拉斯金字塔分解的第L层图像。由LP0,LP1、LP2…LPN构成的金字塔即为拉普拉斯金字塔。它的每一层L0图像是高斯金字塔本层G0图像与其高一层图像G1经内插放大后图像*G1的差,此过程相当于带通滤波,因此拉普拉斯金字塔又称为带通金字塔分解。

  内插方法:opencv中有实现的函数pyrup。可以得到*G1。然后在两个函数作差,相减就可以得到拉普拉斯金字塔。

  求得每个图像的拉普拉斯金字塔后需要对相应层次的图像进行融合,具体的融合规则有,取大、取小,等等。

(3)重构

     对融合后的拉普拉斯金字塔,从其顶层开始逐层从上至下按下式进行递推,可以恢复其对应的高斯金字塔,并最终可得到原图像G0。就是从最高层开始使用内插的方法。

拉普拉斯金字塔融合是图像处理中的一种方法,主要用于图像融合和图像特征提取。 首先,我们先介绍一下拉普拉斯金字塔的概念。拉普拉斯金字塔是一种图像金字塔,由一系列不同分辨率的图像构成。在每个分辨率层级上,通过下采样操作将原始图像缩小,并通过上采样操作将缩小的图像放大回原始尺寸。将每个层级的上采样图像与同一层级的原始图像相减,得到该层级的拉普拉斯图像。拉普拉斯金字塔通常用于图像压缩和图像特征提取。 而拉普拉斯金字塔融合是指将两幅不同的图像进行融合,并生成新的融合图像。具体步骤如下: 1. 首先,构建两幅待融合图像的拉普拉斯金字塔。这需要将每幅图像分解为多个分辨率层级,并用上采样和下采样进行操作来得到每个层级的图像。 2. 对两幅图像的每个相同分辨率层级的拉普拉斯图像进行融合。常见的融合方法包括按权重线性叠加、均值融合和最大值融合等。 3. 对每个融合后的分辨率层级,使用上采样操作将其放大回原始尺寸,并与上一层级的融合图像相加。这样就可以得到最终的融合图像。 通过拉普拉斯金字塔融合方法,可以将两幅图像的细节信息进行融合,并生成更加清晰和有丰富细节的图像。这种方法在图像融合、图像增强和图像特征提取等领域具有广泛的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值