文章目录
前言
上一篇我们学习了解析信号,它将信号的负频率部分镜像叠加到正频率部分便于分析。然而,频带信号有着不同的载频,分析起来还是不够方便,这篇我们就将继续介绍,对信号的“改造”,统一基带信号和频带信号的分析方法。
一、频带信号的复包络
为了分析方便,可以把频带信号的解析信号再搬移到基带来进行统一的分析,这种方法叫做等效基带分析,搬移以后得到的基带信号就叫做频带信号的复包络,也叫等效基带信号。
具体而言,假设我们有载频为 f c f_c fc的频带信号 x ( t ) x(t) x(t),那么容易得到解析信号:
z ( t ) = x ( t ) + j x ^ ( t ) z(t)=x(t)+j\hat{x}(t) z(t)=x(t)+jx^(t)
然后我们需要把它搬移到基带,原信号复包络的频谱 X L ( f ) X_L(f) XL(f)为解析信号的频谱向左搬移 f c f_c fc
X L ( f ) = Z ( f + f c ) = ∫ z ( t ) e − j 2 π ( f + f c ) t d t X_L(f)=Z(f+fc)=\int z(t)e^{-j2\pi (f+f_c)t}dt XL(f)=Z(f+fc)=∫z(t)e−j2π(f+fc)tdt
= ∫ z ( t ) e − j 2 π f c t e − j 2 π f t d t =\int z(t)e^{-j2\pi f_c t}e^{-j2\pi ft}dt =∫z(t)e−j2πfcte−j2πftdt
这样,我们就得到了频带信号复包络的时域表示:
x L ( t ) = z ( t ) e − j 2 π f c t x_L(t)=z(t)e^{-j2\pi f_ct} xL(t)=z(t)e