前言
上文讲到矩阵的零空间,即线性方程组 A x = 0 \bm{Ax}=\bm{0} Ax=0的解集。那么容易联想到的一个问题是, A x = b \bm{Ax}=\bm{b} Ax=b的解集有什么性质?也会构成类似的向量空间吗?与矩阵的零空间有什么联系呢?
一、齐次线性方程组的解集
A x = 0 \bm{Ax}=\bm{0} Ax=0被称为齐次线性方程组,即常数项为0的线性方程组。它的解集根据上篇笔记2.4中的结论,就是矩阵 A \bm{A} A的零空间。我们也找到了构成出该零空间的一组基的方法,即先找到矩阵列向量的一个极大线性无关组,再依次令“多余”列向量的系数分别为1,求解出若干解向量,这些解向量即构成零空间的基。由这组基进行任意的线性组合得到的向量都是方程组 A x = 0 \bm{Ax}=\bm{0} Ax=0的解。
二、非齐次线性方程组的解集。
A x = b \bm{Ax}=\bm{b} Ax=b被称为非齐次线性方程组,其中 b ≠ 0 \bm{b}\neq \bm{0} b=0。它的解集会构成向量空间吗?显然不会,因为零向量不是该方程组的解。下面我们来分析一下这个解集的性质,并分析其与矩阵零空间的关系。
2.1 矩阵的列秩等于列数时
列秩等于列数,说明矩阵的列向量之间皆线性无关(此时,称矩阵为满秩矩阵)。因此,根据笔记2.3中的结论(用一组线性无关的向量表示一个与之线性相关的向量时,只存在唯一的一组线性表示系数。),若向量 b \bm{b} b属于矩阵列空间,则基于矩阵 A \bm{A} A的列向量,只存在唯一的一组线性表示系数使得方程组成立。即只存在唯一解。若向量 b \bm{b} b不属于矩阵列空间则无解。
2.1 矩阵的列秩小于列数时
此时,则说明存在“多余向量”。不妨设矩阵 A \bm{A} A的列数为 m m m,列秩为 n n n, n < m n<m n<m。由笔记2.4中的结论,矩阵 A \bm{A} A的零空间维度为 m − n m-n m−n。同样,若向量 b \bm{b} b不属于矩阵列空间,方程组仍然无解。若向量 b \bm{b} b属于矩阵列空间,则我们可以通过 n n n个线性无关向量对 b \bm{b} b做唯一的线性表示:
b = x 1 a