NNDL 作业8:RNN - 简单循环网络

目录

1. 使用Numpy实现SRN

2. 在1的基础上,增加激活函数tanh

3. 分别使用nn.RNNCell、nn.RNN实现SRN

4. 分析“二进制加法” 源代码

5. 实现“Character-Level Language Models”源代码

6. 分析“序列到序列”源代码

7. “编码器-解码器”的简单实现

总结

参考链接


1. 使用Numpy实现SRN

 代码:

import numpy as np

inputs = np.array([[1., 1.],
                   [1., 1.],
                   [2., 2.]])  # 初始化输入序列
print('inputs is ', inputs)

state_t = np.zeros(2, )  # 初始化存储器
print('state_t is ', state_t)

w1, w2, w3, w4, w5, w6, w7, w8 = 1., 1., 1., 1., 1., 1., 1., 1.
U1, U2, U3, U4 = 1., 1., 1., 1.
for input_t in inputs:
    print('inputs is ', input_t)
    print('state_t is ', state_t)
    in_h1 = np.dot([w1, w3], input_t) + np.dot([U2, U4], state_t)
    in_h2 = np.dot([w2, w4], input_t) + np.dot([U1, U3], state_t)
    state_t = in_h1, in_h2
    output_y1 = np.dot([w5, w7], [in_h1, in_h2])
    output_y2 = np.dot([w6, w8], [in_h1, in_h2])
    print('output_y is ', output_y1, output_y2)
    print('---------------------')

 运行结果:

 手算结果:

和PPT结果以及程序运算结果一致。

2. 在1的基础上,增加激活函数tanh

代码:

import numpy as np

inputs = np.array([[1., 1.],
                   [1., 1.],
                   [2., 2.]])  # 初始化输入序列
print('inputs is ', inputs)

state_t = np.zeros(2, )  # 初始化存储器
print('state_t is ', state_t)

w1, w2, w3, w4, w5, w6, w7, w8 = 1., 1., 1., 1., 1., 1., 1., 1.
U1, U2, U3, U4 = 1., 1., 1., 1.
print('--------------------------------------')
for input_t in inputs:
    print('inputs is ', input_t)
    print('state_t is ', state_t)
    in_h1 = np.tanh(np.dot([w1, w3], input_t) + np.dot([U2, U4], state_t))
    in_h2 = np.tanh(np.dot([w2, w4], input_t) + np.dot([U1, U3], state_t))
    state_t = in_h1, in_h2
    output_y1 = np.dot([w5, w7], [in_h1, in_h2])
    output_y2 = np.dot([w6, w8], [in_h1, in_h2])
    print('output_y is ', output_y1, output_y2)
    print('---------------------------------------------')

运行结果:

3. 分别使用nn.RNNCell、nn.RNN实现SRN

学习一下nn.RNNCell()和nn.RNN():

这两种方式的区别在于nn.RNNCell()只能接受序列中单步的输入,且必须传入隐藏状态,而nn.RNN()可以接受一个序列的输入,默认会传入全 0 的隐藏状态,也可以自己申明隐藏状态传入。一般情况下我们都是用nn.RNN()而不是nn.RNNCell(),因为 nn.RNN() 能够避免我们手动写循环,非常方便。
下面是nn.RNNCell()和nn.RNN()的官方文档介绍:

nn.RNN():

 
RNN的输入格式不同于CNN,CNN模型的输入尺寸是batch_size放前面,也就是
[batch_size, input_size_1, input_size_2],而RNN是放中间,也就是
[input_size_1, batch_size, input_size_2]

nn.RNNCell():


可以看到nn.RNN()是读取了0时刻的隐层信息h0,剩下的过程自动循环完成;而nn.RNNCell()需要自己写循环处理。


接下来代码实现对比二者区别:

 nn.RNNCell实现:

import torch

batch_size = 1
seq_len = 3  # 序列长度
input_size = 2  # 输入序列维度
hidden_size = 2  # 隐藏层维度
output_size = 2  # 输出层维度

# RNNCell
cell = torch.nn.RNNCell(input_size=input_size, hidden_size=hidden_size)
# 初始化参数 https://zhuanlan.zhihu.com/p/342012463
for name, param in cell.named_parameters():
    if name.startswith("weight"):
        torch.nn.init.ones_(param)
    else:
        torch.nn.init.zeros_(param)
# 线性层
liner = torch.nn.Linear(hidden_size, output_size)
liner.weight.data = torch.Tensor([[1, 1], [1, 1]])
liner.bias.data = torch.Tensor([0.0])

seq = torch.Tensor([[[1, 1]],
                    [[1, 1]],
                    [[2, 2]]])
hidden = torch.zeros(batch_size, hidden_size)
output = torch.zeros(batch_size, output_size)

for idx, input in enumerate(seq):
    print('=' * 20, idx, '=' * 20)

    print('Input :', input)
    print('hidden :', hidden)

    hidden = cell(input, hidden)
    output = liner(hidden)
    print('output :', output)

运行结果:

nn.RNN实现:

import torch

batch_size = 1
seq_len = 3
input_size = 2
hidden_size = 2
num_layers = 1
output_size = 2

cell = torch.nn.RNN(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers)
for name, param in cell.named_parameters():  # 初始化参数
    if name.startswith("weight"):
        torch.nn.init.ones_(param)
    else:
        torch.nn.init.zeros_(param)

# 线性层
liner = torch.nn.Linear(hidden_size, output_size)
liner.weight.data = torch.Tensor([[1, 1], [1, 1]])
liner.bias.data = torch.Tensor([0.0])

inputs = torch.Tensor([[[1, 1]],
                       [[1, 1]],
                       [[2, 2]]])
hidden = torch.zeros(num_layers, batch_size, hidden_size)
out, hidden = cell(inputs, hidden)

print('Input :', inputs[0])
print('hidden:', 0, 0)
print('Output:', liner(out[0]))
print('--------------------------------------')
print('Input :', inputs[1])
print('hidden:', out[0])
print('Output:', liner(out[1]))
print('--------------------------------------')
print('Input :', inputs[2])
print('hidden:', out[1])
print('Output:', liner(out[2]))

运行结果:

4. 分析“二进制加法” 源代码

 二进制加法思想为逢二进一,对应到代码上“二进制加法”主要做的事就是告诉RNN前一阶段的运算结果(进位)和当前阶段(加法),让RNN网络自己去学习加法和进位操作,具体操作就是将两个二进制传入,从最后一位开始,一层一层地通过sigmoid函数,得到最终的预测值。然后将预测值与准确值之间的差值设为layer_2层的loss值。得出loss值后,就可以得到对应层的权重参数,进而从最高位像前进行反向传播(从代码上来看,就是很普通的反向传播)。

动态演示:

前向传播:

反向传播(黑色是预测值,errors是亮黄色,派生物(导数)是芥末色):

讲的不是那么清楚,官网有更加详细的演示解释和代码注释:
Anyone Can Learn To Code an LSTM-RNN in Python (Part 1: RNN) - i am trask

5. 实现“Character-Level Language Models”源代码


因为这次反向传播和之间实验做得反向传播相差不大,所以直接调用backward():

import torch

# 使用RNN 有嵌入层和线性层
num_class = 4     # 4个类别
input_size = 4    # 输入维度是4
hidden_size = 8   # 隐层是8个维度
embedding_size = 10 # 嵌入到10维空间
batch_size = 1
num_layers = 2    # 两层的RNN
seq_len = 5       # 序列长度是5

# 准备数据
idx2char = ['e','h','l','o'] # 字典
x_data = [[1,0,2,2,3]] # hello  维度(batch,seqlen)
y_data = [3,1,2,3,2] # ohlol    维度 (batch*seqlen)

inputs = torch.LongTensor(x_data)
labels = torch.LongTensor(y_data)

# 构造模型
class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.emb = torch.nn.Embedding(input_size,embedding_size)
        self.rnn = torch.nn.RNN(input_size=embedding_size,hidden_size=hidden_size,num_layers=num_layers,batch_first=True)
        self.fc = torch.nn.Linear(hidden_size,num_class)

    def forward(self,x):
        hidden = torch.zeros(num_layers,x.size(0),hidden_size)
        x = self.emb(x) # (batch,seqlen,embeddingsize)
        x,_ = self.rnn(x,hidden)
        x = self.fc(x)
        return x.view(-1,num_class) # 转变维2维矩阵,seq*batchsize*numclass -》((seq*batchsize),numclass)

model = Model()

# 损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(),lr=0.05)  # lr = 0.01学习的太慢

# 训练
for epoch in range(15):

    optimizer.zero_grad()
    outputs = model(inputs) # inputs是(seq,Batchsize,Inputsize) outputs是(seq,Batchsize,Hiddensize)
    loss = criterion(outputs,labels) # labels是(seq,batchsize,1)
    loss.backward()
    optimizer.step()

    _,idx = outputs.max(dim=1)
    idx = idx.data.numpy()
    print("Predicted:",''.join([idx2char[x] for x in idx]),end='')
    print(",Epoch {}/15 loss={:.3f}".format(epoch+1,loss.item()))

运行结果:

翻译:开头便提到了普通网络和卷积神经网络的局限性,即接受固定大小的向量作为输入(例如图像)并产生固定大小的向量作为输出(例如不同类别的概率) )。不仅如此:这些模型使用固定数量的计算步骤(例如模型中的层数)执行此映射。而循环网络允许我们对向量序列进行操作输入中的序列、输出中的序列,或者在最一般的情况下两者兼而有之,如下所示:

 每个矩形都是一个向量,箭头代表函数(例如矩阵乘法)。输入向量为红色,输出向量为蓝色,绿色向量保持 RNN 的状态(稍后会详细介绍)。从左到右:(1)没有RNN的Vanilla模式处理,从固定大小的输入到固定大小的输出(例如图像分类)。(2)序列输出(例如图像字幕获取图像并输出一个单词的句子)。(3)序列输入(例如,给定句子被分类为表达积极或消极情绪的情绪分析)。(4)序列输入和序列输出(例如机器翻译:RNN 读取英文句子,然后输出法文句子)。(5)同步序列输入和输出(例如,我们希望标记视频的每一帧的视频分类)。请注意,在每种情况下,对长度序列都没有预先指定的约束,因为循环变换(绿色)是固定的,可以应用任意多次。(抄自谷歌翻译)

总的来说,RNN 将输入向量与其状态向量与一个固定的(但学习的)函数相结合,以产生一个新的状态向量,如果训练普通神经网络是对函数的优化,那么训练循环网络就是对程序的优化。

但是RNN在没有序列的情况下仍能进行顺序处理,如下:

即即使数据不是序列形式,您仍然可以制定和训练强大的模型来学习按顺序处理它。

然后就是介绍char-RNN的内容:

具有 4 维输入和输出层以及 3 个单元(神经元)的隐藏层的示例 RNN。该图显示了当向 RNN 输入字符“hell”作为输入时,前向传递中的激活。输出层包含 RNN 为下一个字符分配的置信度(词汇为“h,e,l,o”);我们希望绿色数字高,红色数字低。

例如,我们看到,在第一个时间步,当 RNN 看到字符“h”时,它为下一个字母“h”分配置信度 1.0,将 2.2 分配给字母“e”,-3.0 分配给“l”,以及 4.1也”。由于在我们的训练数据(字符串“hello”)中,下一个正确字符是“e”,我们希望增加它的置信度(绿色)并降低所有其他字母的置信度(红色)。同样,在我们希望网络赋予更大置信度的 4 个时间步长中的每一个时间步长上,我们都有一个期望的目标角色。由于 RNN 完全由可微分运算组成,我们可以运行反向传播算法(这只是微积分中链式法则的递归应用)来确定我们应该向哪个方向调整每个权重以增加正确目标的分数(绿色粗体数字)。然后我们可以执行一个参数更新,在这个梯度方向上微调每个权重。如果我们在参数更新后向 RNN 提供相同的输入,我们会发现正确字符的分数(例如第一个时间步中的“e”)会略高(例如 2.3 而不是 2.2),并且错误字符的分数会略低。然后我们一遍又一遍地重复这个过程,直到网络收敛并且它的预测最终与训练数据一致,因为正确的字符总是被预测到下一个。

更技术性的解释是,我们同时对每个输出向量使用标准 Softmax 分类器(通常也称为交叉熵损失)。RNN 使用小批量随机梯度下降进行训练,我喜欢使用RMSProp或 Adam(每参数自适应学习率方法)来稳定更新。

另请注意,第一次输入字符“l”时,目标是“l”,但第二次输入的目标是“o”。因此,RNN 不能单独依赖输入,必须使用其循环连接来跟踪上下文以完成此任务。

测试时,我们将一个字符输入 RNN 并获得接下来可能出现的字符的分布。我们从这个分布中采样,并直接反馈给它以获得下一个字母。重复此过程,您正在对文本进行采样!现在让我们在不同的数据集上训练一个 RNN,看看会发生什么。

为了进一步澄清,出于教育目的,作者还给出了Python/numpy 中编写了一个最小的字符级 RNN 语言模型。它只有大约 100 行长,如果你更擅长阅读代码而不是文本,希望它能提供一个简洁、具体和有用的总结。我们现在将深入研究使用更高效的 Lua/Torch 代码库生成的示例结果。

最后,作者给了几个RNN的应用,不再赘述。

参考链接:

The Unreasonable Effectiveness of Recurrent Neural Networks

6. 分析“序列到序列”源代码

将Seq2Seq模型分为三部分:Encoder、Decoder、Seq2Seq。

Encoder:

 这一部分有五个参数,分别为

  • input_dim输入encoder的one-hot向量维度,这个和输入词汇大小一致
  • emb_dim嵌入层的维度,这一层将one-hot向量转为密度向量
  • hid_dim隐藏层和cell状态维度
  • n_layersRNN的层数
  • dropout是要使用的丢失量。这是一个防止过度拟合的正则化参数

 返回值:输出(每个时间步的顶层隐藏状态),隐藏(每个层的最终隐藏状态h^{T},堆叠在彼此之上)和单元格(每个层的最终单元状态C^{T},叠加在彼此之上)。
由于只需要最终隐藏和单元格状态(以制作我们的上下文向量),因此只返回隐藏和单元格。

Decoder:

Decoder只执行一个解码步骤。第一层将从前一个时间步,接收隐藏和单元状态,并通过将当前的token 喂给LSTM,进一步产生一个新的隐藏和单元状态。后续层将使用下面层中的隐藏状态,以及来自其图层的先前隐藏和单元状态,。这提供了与编码器中的方程非常相似的方程。
另外,Decoder的初始隐藏和单元状态是我们的上下文向量,它们是来自同一层的Encoder的最终隐藏和单元状态
接下来将隐藏状态传递给Linear层,预测目标序列下一个标记应该是什么。
Decoder的参数和Encoder类似,其中output_dim是将要输入到Decoder的one-hot向量。
在forward方法中,获取到了输入token、上一层的隐藏状态和单元状态。解压之后加入句子长度维度。接下来与Encoder类似,传入嵌入层并使用dropout,然后将这批嵌入式令牌传递到具有先前隐藏和单元状态的RNN。这产生了一个输出(来自RNN顶层的隐藏状态),一个新的隐藏状态(每个层一个,堆叠在彼此之上)和一个新的单元状态(每层也有一个,堆叠在彼此的顶部) )。然后我们通过线性层传递输出(在除去句子长度维度之后)以接收我们的预测。然后我们返回预测,新的隐藏状态和新的单元状态。

Seq2Seq:

  • 接收输入/源句子
  • 使用Encoder生成上下文向量
  • 使用Decoder生成预测输出/目标句子 

参数说明:

  • device :把张量放到GPU上。新版的Pytorch使用to方法可以容易地将对象移动到不同的设备(代替以前的cpu()或cuda()方法)
  • outputs:存储Decoder所有输出的张量
  • teacher_forcing_ratio:该参数的作用是,当使用teacher force时,decoder网络的下一个input是目标语言的下一个字符,当不使用时,网络的下一个input是其预测出的那个字符。

在该网络中,编码器和解码器的层数(n_layers)和隐藏层维度(hid_dim)是相等。但是,在其他的Seq2seq模型中不一定总是需要相同的层数或相同的隐藏维度大小。例如,编码器有2层,解码器只有1层,这就需要进行相应的处理,如对编码器输出的两个上下文向量求平均值,或者只使用最后一层的上下文向量作为解码器的输入等。

分析的不太到位,可以去看官网源码以及相应的解释或者佬的解释:
NLP From Scratch: Translation with a Sequence to Sequence Network and Attention — PyTorch Tutorials 1.13.0+cu117 documentation
Pytorch学习记录-torchtext和Pytorch的实例( 使用神经网络训练Seq2Seq代码) - 交流_QQ_2240410488 - 博客园Pytorch实现Seq2Seq模型:以机器翻译为例_Flutter Yang的博客-CSDN博客_中src trgPytorch学习记录-torchtext和Pytorch的实例( 使用神经网络训练Seq2Seq代码) - 交流_QQ_2240410488 - 博客园

7. “编码器-解码器”的简单实现

跑了一下源码,还挺好玩:

import torch
import numpy as np
import torch.nn as nn
import torch.utils.data as Data

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

letter = [c for c in 'SE?abcdefghijklmnopqrstuvwxyz']
letter2idx = {n: i for i, n in enumerate(letter)}

seq_data = [['man', 'women'], ['black', 'white'], ['king', 'queen'], ['girl', 'boy'], ['up', 'down'], ['high', 'low']]

# Seq2Seq Parameter
n_step = max([max(len(i), len(j)) for i, j in seq_data])  # max_len(=5)
n_hidden = 128
n_class = len(letter2idx)  # classfication problem
batch_size = 3


def make_data(seq_data):
    enc_input_all, dec_input_all, dec_output_all = [], [], []

    for seq in seq_data:
        for i in range(2):
            seq[i] = seq[i] + '?' * (n_step - len(seq[i]))  # 'man??', 'women'

        enc_input = [letter2idx[n] for n in (seq[0] + 'E')]  # ['m', 'a', 'n', '?', '?', 'E']
        dec_input = [letter2idx[n] for n in ('S' + seq[1])]  # ['S', 'w', 'o', 'm', 'e', 'n']
        dec_output = [letter2idx[n] for n in (seq[1] + 'E')]  # ['w', 'o', 'm', 'e', 'n', 'E']

        enc_input_all.append(np.eye(n_class)[enc_input])
        dec_input_all.append(np.eye(n_class)[dec_input])
        dec_output_all.append(dec_output)  # not one-hot

    # make tensor
    return torch.Tensor(enc_input_all), torch.Tensor(dec_input_all), torch.LongTensor(dec_output_all)

enc_input_all, dec_input_all, dec_output_all = make_data(seq_data)


class TranslateDataSet(Data.Dataset):
    def __init__(self, enc_input_all, dec_input_all, dec_output_all):
        self.enc_input_all = enc_input_all
        self.dec_input_all = dec_input_all
        self.dec_output_all = dec_output_all

    def __len__(self):  # return dataset size
        return len(self.enc_input_all)

    def __getitem__(self, idx):
        return self.enc_input_all[idx], self.dec_input_all[idx], self.dec_output_all[idx]


loader = Data.DataLoader(TranslateDataSet(enc_input_all, dec_input_all, dec_output_all), batch_size, True)


# Model
class Seq2Seq(nn.Module):
    def __init__(self):
        super(Seq2Seq, self).__init__()
        self.encoder = nn.RNN(input_size=n_class, hidden_size=n_hidden, dropout=0.5)  # encoder
        self.decoder = nn.RNN(input_size=n_class, hidden_size=n_hidden, dropout=0.5)  # decoder
        self.fc = nn.Linear(n_hidden, n_class)

    def forward(self, enc_input, enc_hidden, dec_input):
        enc_input = enc_input.transpose(0, 1)  # enc_input: [n_step+1, batch_size, n_class]
        dec_input = dec_input.transpose(0, 1)  # dec_input: [n_step+1, batch_size, n_class]

        # h_t : [num_layers(=1) * num_directions(=1), batch_size, n_hidden]
        _, h_t = self.encoder(enc_input, enc_hidden)
        # outputs : [n_step+1, batch_size, num_directions(=1) * n_hidden(=128)]
        outputs, _ = self.decoder(dec_input, h_t)

        model = self.fc(outputs)  # model : [n_step+1, batch_size, n_class]
        return model


model = Seq2Seq().to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

for epoch in range(5000):
    for enc_input_batch, dec_input_batch, dec_output_batch in loader:
        # make hidden shape [num_layers * num_directions, batch_size, n_hidden]
        h_0 = torch.zeros(1, batch_size, n_hidden).to(device)

        (enc_input_batch, dec_intput_batch, dec_output_batch) = (
        enc_input_batch.to(device), dec_input_batch.to(device), dec_output_batch.to(device))
        # enc_input_batch : [batch_size, n_step+1, n_class]
        # dec_intput_batch : [batch_size, n_step+1, n_class]
        # dec_output_batch : [batch_size, n_step+1], not one-hot
        pred = model(enc_input_batch, h_0, dec_intput_batch)
        # pred : [n_step+1, batch_size, n_class]
        pred = pred.transpose(0, 1)  # [batch_size, n_step+1(=6), n_class]
        loss = 0
        for i in range(len(dec_output_batch)):
            # pred[i] : [n_step+1, n_class]
            # dec_output_batch[i] : [n_step+1]
            loss += criterion(pred[i], dec_output_batch[i])
        if (epoch + 1) % 1000 == 0:
            print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()


# Test
def translate(word):
    enc_input, dec_input, _ = make_data([[word, '?' * n_step]])
    enc_input, dec_input = enc_input.to(device), dec_input.to(device)
    # make hidden shape [num_layers * num_directions, batch_size, n_hidden]
    hidden = torch.zeros(1, 1, n_hidden).to(device)
    output = model(enc_input, hidden, dec_input)
    # output : [n_step+1, batch_size, n_class]

    predict = output.data.max(2, keepdim=True)[1]  # select n_class dimension
    decoded = [letter[i] for i in predict]
    translated = ''.join(decoded[:decoded.index('E')])

    return translated.replace('?', '')

print('test')
print('man ->', translate('man'))
print('mans ->', translate('mans'))
print('king ->', translate('king'))
print('black ->', translate('black'))
print('up ->', translate('up'))
print('old ->', translate('old'))
print('high ->', translate('high'))

运行结果:

参考链接:

lcSeq2Seq的PyTorch实现 - mathor

总结

这次主要复习了RNN、seq2seq模型,在李宏毅和吴恩达老师的课上听过一些,吴恩达老师也提过这次翻译的论文,只不过当时做的作业是恐龙小作业。学习了char-RNN模型以及对比了nn.RNN()和nn.RNNCell()的不同,并做了复现,花了好多时间在阅读论文和代码上面,但是还是不能完全掌握,需要课上进一步探索。感觉结果还挺有意思,与端到端学习不同,大致知道怎么来的。
 

参考链接

NNDL 作业8:RNN - 简单循环网络_HBU_David的博客-CSDN博客

【PyTorch】深度学习实践之 RNN基础篇——实现RNN_zoetu的博客-CSDN博客_pytorch实现rnn

NNDL 作业8:RNN - 简单循环网络_HBU_David的博客-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值