8类放球问题

放球问题简介

放球问题是一类很有意思的排列组合问题。通俗来说,就是把n个小球放到m个盒子里,问有几种放法。根据小球是否相同,盒子是否相同,是否允许有空盒,又可以把问题细分为8个具体的问题。其中有一些问题是非常简单的,有一些问题经常出现在一些经典的排列组合问题当中,有一些问题则比较有难度,难以通过一个表达式直接写出答案。

放球问题的解法

我们分8种情况具体讨论这个问题。假设有n个小球,m个盒子,且默认n ≥ \geq m。我们就从易到难,慢慢来分析。

1.球不同,盒不同,允许有空盒

这是最简单的一种情况。对于每个小球,有m种放法,一共有n个小球,于是一共有 m n m^n mn种放法。

2.球相同,盒不同,不允许有空盒

由于球相同,我们可以把每个球看成一个0,n个球组成了一个长度为n的全0序列。放小球的过程可以看成把这个序列分为m段,且每段长度大于0。于是我们就可以用隔板法解决了。问题相当于在这个长度为n的序列中插入m-1个隔板,从而就把序列分成了m段。这个序列有n-1个间隙,为了保证每段长度大于0,则只需要两块隔板不放在同一个间隙中。于是问题就变成了,在n-1个间隙中,挑选m-1个位置放隔板,即 C n − 1 m − 1 C_{n-1}^{m-1} Cn1m1种放法。

3.球相同,盒不同,允许有空盒

这个有两种做法。第一种做法是这样的。跟上面那种情况类似,也是看成一个序列,但是两个隔板是可以相邻的。n个球,m-1个隔板,一共长度为n+m-1。我们只需要在这个n+m-1个位置中选m-1个位置作为隔板即可,于是有 C n + m − 1 m − 1 C_{n+m-1}^{m-1} Cn+m1m1种放法。
第二种做法是,可以认为我们一开始有n+m个小球,先在每个盒中放上一个小球。于是问题就转化为了n+m个球放在m个盒子里,不允许有空盒的情况。套用上面的公式,得有 C n + m − 1 m − 1 C_{n+m-1}^{m-1} Cn+m1m1种放法。

4.球不同,盒不相同,不允许有空盒

到这里,问题开始变得难起来了。正难则反,我们反过来,考虑必定存在空盒的情况。这里我们采用容斥原理的方法做。由于盒子不同,给每个盒子从1-m编个号。令 A i A_i Ai表示第i个盒子是空的情况,|A|表示在A情况下的方案数。比如 ∣ A i ∣ |A_i| Ai表示第i个盒子一定是空盒的方案数,那么 ∣ A i ∣ = ( m − 1 ) n |A_i|=(m-1)^n Ai=(m1)n
∣ A i ∩ A j ∣ |A_i \cap A_j| AiAj表示第i个盒子和第j个盒子同时是空盒的情况数,即 ( m − 2 ) n (m-2)^n (m2)n种。我们要求有空盒的方案数,即 ∣ A 1 ∪ A 2 ∪ ⋯ ∪ A m ∣ |A_1\cup A_2\cup \cdots \cup A_m| A1A2Am
根据容斥原理的公式,
∣ A 1 ∪ A 2 ∪ ⋯ ∪ A m ∣ = ∑ 1 ≤ i ≤ m ∣ A i ∣ − ∑ 1 ≤ i < j ≤ m ∣ A i ∩ A j ∣ + ∑ 1 ≤ i < j < k ≤ m ∣ A i ∩ A j ∩ A k ∣ − ⋯ + ( − 1 ) m − 1 ∣ A 1 ∩ A 2 ∩ ⋯ ∩ A m ∣ = C m 1 ( m − 1 ) n − C m 2 ( m − 2 ) n + C m 3 ( m − 3 ) n − ⋯ + ( − 1 ) m − 1 C m m ( m − m ) n = ∑ k = 1 m ( − 1 ) k − 1 C m k ( m − k ) n |A_1\cup A_2\cup \cdots \cup A_m|=\sum_{1\leq i \leq m}{|A_i|}-\sum_{1\leq i<j \leq m}{|A_i \cap A_j|}+\sum_{1 \leq i<j<k \leq m}{|A_i \cap A_j \cap A_k|}-\cdots+(-1)^{m-1}|A_1 \cap A_2 \cap \cdots \cap A_m|=C_m^1(m-1)^n-C_m^2(m-2)^n+C_m^3(m-3)^n-\cdots +(-1)^{m-1}C_m^m(m-m)^n=\sum_{k=1}^m{(-1)^{k-1}C_m^k(m-k)^n} A1A2Am=1imAi1i<jmAiAj+1i<j<kmAiAjAk+(1)m1A1A2Am=Cm1(m1)nCm2(m2)n+Cm3(m3)n+(1)m1Cmm(mm)n=k=1m(1)k1Cmk(mk)n
必定存在空盒的方案数有 ∑ k = 1 m ( − 1 ) k − 1 C m k ( m − k ) n \sum_{k=1}^m{(-1)^{k-1}C_m^k(m-k)^n} k=1m(1)k1Cmk(mk)n种,那么不存在空盒的方案数有 m n − ∑ k = 1 m ( − 1 ) k − 1 C m k ( m − k ) n = ∑ k = 0 m ( − 1 ) k C m k ( m − k ) n m^n-\sum_{k=1}^m{(-1)^{k-1}C_m^k(m-k)^n}=\sum_{k=0}^m{(-1)^kC_m^k(m-k)^n} mnk=1m(1)k1Cmk(mk)n=k=0m(1)kCmk(mk)n
总的来说,求解的思路是通过容斥原理,把较难的不允许有空盒的情况转化为较为容易的允许有空盒的情况。

5.球不同,盒相同,不允许有空盒

这个问题跟上一个问题相比,仅仅是盒不同改成了盒相同,那么由于球不同,所以这个问题的放法是上面问题放法的 1 m ! \frac{1}{m!} m!1,即 1 m ! ∑ k = 0 m ( − 1 ) k C m k ( m − k ) n \frac{1}{m!}\sum_{k=0}^m{(-1)^kC_m^k(m-k)^n} m!1k=0m(1)kCmk(mk)n
由于该问题求解起来较为复杂,所以人们为这个问题专门定义了一个术语——第二类斯特林数。第二类斯特林数 S ( n , m ) S(n,m) S(n,m)表示将n个不同的小球放在m个相同的盒子中,不允许有空盒的方案数。
那么,根据我们的推导, S ( n , m ) = 1 m ! ∑ k = 0 m ( − 1 ) k C m k ( m − k ) n S(n,m)=\frac{1}{m!}\sum_{k=0}^m{(-1)^kC_m^k(m-k)^n} S(n,m)=m!1k=0m(1)kCmk(mk)n
同时,这也是 S ( n , m ) S(n,m) S(n,m)的通项公式。

6.球不同,盒相同,允许有空盒

相比于上面的问题,这个问题允许有空盒了。那么我们只需要枚举非空盒的个数,就能转化为上面的问题了。有i个非空盒时,方案数为 S ( n , i ) S(n,i) S(n,i)。于是总方案数为 ∑ i = 1 m S ( n , i ) \sum_{i=1}^m{S(n,i)} i=1mS(n,i)

7.球相同,盒相同,允许有空盒

这个问题可以用母函数的方法做,但是由于本人才疏学浅,没有学过母函数的方法,于是在这里提供一种递推的解法。
设方案数为 f ( n , m ) f(n,m) f(n,m)
先给出边界情况,当小球数为0或盒子数为1,肯定就只有1种方案了。
再分类讨论,给出递推关系式。
若小球数比盒子数少,则多出来的盒子只能空着,于是有 f ( n , m ) = f ( n , n ) , n < m f(n,m)=f(n,n),n<m f(n,m)=f(n,n)n<m
若小球数不比盒子数少,那么我们就要放小球了。整体思路是,把盒子排成一排,后面的盒子放的小球数不能超过前面盒子的小球数。这样枚举的话,才能不重不漏。我们考虑当前的最后一个盒子,有放小球和不放小球两种情况。如果空着,方案数为 f ( n , m − 1 ) f(n,m-1) f(n,m1)。如果要放小球,由于这个盒子的小球必须是最少的,所以前面所有盒子都要放一个小球,这样的方案数为 f ( n − m , m ) f(n-m,m) f(nm,m)
合起来,可以得到 f ( n , m ) f(n,m) f(n,m)的递推表达式
f ( n , m ) = { 1 n = 0 ∣ ∣ m = 1 f ( n , n ) n < m f ( n − m , m ) + f ( n , m − 1 ) n ≥ m f(n,m)=\begin{cases} 1 & n=0 || m=1 \\ f(n,n) & n<m \\ f(n-m,m)+f(n,m-1) & n\geq m \end{cases} f(n,m)= 1f(n,n)f(nm,m)+f(n,m1)n=0∣∣m=1n<mnm

8.球相同,盒相同,不允许有空盒

既然球跟盒都相同,那不妨拿出m个球,先在每个盒子里放上一个球。这样问题就转化为,将n-m个相同的小球放到m个盒子里,允许有空盒的问题了。方案数即为 f ( n − m , m ) f(n-m,m) f(nm,m)

代码

下面是我写的python代码

import math
def f(n,m):
    if n==0 or m==1:
        return 1
    if n<m:
        return f(n,n)
    return f(n-m,m)+f(n,m-1)
def S(n,m):
    return sum((-1)**k * math.comb(m, k) * math.pow(m-k, n) for k in range(m+1))/math.factorial(m)
def fangqiu(n,m,qiu,he,kong): #n表示球数,m表示盒数,qiu表示小球是否相同,he表示盒子是否相同,kong表示是否允许有空盒
    if qiu==0 and he==0 and kong==1:
        return m**n
    if qiu==1 and he==0 and kong==0:
        return math.comb(n-1,m-1)
    if qiu==1 and he==0 and kong==1:
        return math.comb(n+m-1,m-1)
    if qiu==0 and he==0 and kong==0:
        return S(n, m)*math.factorial(m)
    if qiu==0 and he==1 and kong==0:
        return S(n, m)
    if qiu==0 and he==1 and kong==1:
        return sum(S(n,i) for i in range(1,m+1))
    if qiu==1 and he==1 and kong==1:
        return f(n,m)
    if qiu==1 and he==1 and kong==0:
        return f(n-m,m)
n,m=map(int,input().split())
print(int(fangqiu(n,m,0,0,1)))

总结

虽然我们按一定的标准,划分出了8个问题,但其实这8个问题又有很多变种。比如,我们只关注了 n ≥ m n\geq m nm的情况,我们得出的结论一部分对 n ≤ m n\leq m nm适用,一部分却不适用了。掌握解决这一类问题的方法比记住结论更加重要。

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是一个在Visual Studio 2010中使用MFC编写的小球自由落体的示例程序: 1. 创建一个新的MFC项目,并选择“对话框”作为应用程序类型。 2. 打开“资源视图”,双击“对话框”资源,然后将一个“画布”控件拖放到对话框上。 3. 双击“画布”控件,将其ID更改为“IDC_CANVAS”,并将其“类”更改为“CStatic”。 4. 打开“类向导”,并添加一个新的类,名称为“CBall”,从“CObject”类派生。 5. 在CBall类中添加以下成员变量: ```cpp CRect m_rect; // 球的矩形范围 CPoint m_pos; // 球的位置 CPoint m_speed; // 球的速度 int m_radius; // 球的半径 ``` 6. 添加以下成员函数: ```cpp void Draw(CDC* pDC); // 绘制球 void Move(); // 移动球 ``` 7. 在CBall.cpp中实现Draw和Move函数: ```cpp void CBall::Draw(CDC* pDC) { // 绘制球 pDC->Ellipse(m_rect); } void CBall::Move() { // 更新球的位置 m_pos += m_speed; m_rect.left = m_pos.x - m_radius; m_rect.top = m_pos.y - m_radius; m_rect.right = m_pos.x + m_radius; m_rect.bottom = m_pos.y + m_radius; // 碰到边界反弹 CRect rcClient; GetClientRect(&rcClient); if (m_rect.left < rcClient.left || m_rect.right > rcClient.right) { m_speed.x = -m_speed.x; } if (m_rect.top < rcClient.top || m_rect.bottom > rcClient.bottom) { m_speed.y = -m_speed.y; } } ``` 8. 在OnInitDialog函数中创建一个CBall对象,并设置其初始位置、速度和半径: ```cpp BOOL CMyDlg::OnInitDialog() { // ... // 创建球 m_pBall = new CBall; m_pBall->m_pos = CPoint(100, 100); m_pBall->m_speed = CPoint(5, 5); m_pBall->m_radius = 20; return TRUE; } ``` 9. 在OnPaint函数中绘制球: ```cpp void CMyDlg::OnPaint() { CPaintDC dc(this); // 绘制画布背景 CRect rcClient; GetClientRect(&rcClient); dc.FillSolidRect(rcClient, RGB(255, 255, 255)); // 绘制球 m_pBall->Draw(&dc); } ``` 10. 在OnTimer函数中移动球,并调用Invalidate函数重绘: ```cpp void CMyDlg::OnTimer(UINT_PTR nIDEvent) { // 移动球 m_pBall->Move(); // 重绘画布 Invalidate(); CDialogEx::OnTimer(nIDEvent); } ``` 11. 在OnInitDialog函数中启动定时器: ```cpp BOOL CMyDlg::OnInitDialog() { // ... // 启动定时器 SetTimer(1, 20, NULL); return TRUE; } ``` 现在,你可以运行这个程序,在画布上看到一个小球自由落体的动画效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值