前言
本文给大家科普一个很有意思的小问题——蛋糕分配问题。
问题介绍
现在有 n n n个人要分一个蛋糕,问怎么分最平均。
问题分析
问题看起来非常简单,但其实却很难。平均分配其实是一个很主观的概念,同样的东西在不同的人眼中可能价值不一样。所以为了研究这个问题,我们需要客观地来看待这个主观的概念。
首先需要定义什么叫最平均地分配一个蛋糕。在这里,我们采用“无嫉妒”的定义方式。“无嫉妒”也就是每个人都不会嫉妒别人,即每个人都认为自己拿到的蛋糕大于等于别人拿到的蛋糕。
问题解法
二人分配问题
当 n = 2 n=2 n=2时,问题非常简单。一个人切蛋糕,另一个人先选。切蛋糕的人为了让自己得到尽可能大的蛋糕,会尽量把蛋糕切成相等的两个部分(至少在他眼里是相等的),那么无论对方选择哪一块,自己都不会嫉妒他。而对于选的那个人,自然会选两块蛋糕中自己认为大的那一块,自然也不会嫉妒另一个人。所以,在二人分配问题中,存在这样一个完美的解法。
这种“我切你选”的方法,从几千年前就已经有人采用了。比如《圣经》中有这样的记载:亚伯拉罕与洛特分配迦南之地,为了公平,亚伯拉罕把这块地分为东西两块,并让洛特先选。
三人分配问题
当 n = 3 n=3 n=3时,一个比较有效的方法叫塞尔弗里奇-康威(Selfrige-Conway)算法。算法描述如下:
1.P1 按照自己的标准把蛋糕切三块。
2.如果P2认为最大的两块一样大,那么把 P3,P2,P1 的顺序选蛋糕,结束。
3.如果 P2 认为其中一块 A 最大,他就从 A 削去一小块,让A变成A1和A2(A1为被削的整体,A2为削出的一小块),使之与第二大的那块一样大,把 A2 放在一边。
4.P3 先在A1和其它两块中作出选择。
5.然后P2选,但是如果 P3 没有选 A1,那么 P2 必须选 A1,否则P2在剩余两块中选择一块。
6.P1 拿最后一块,然后我们开始分A2。
7.由于(5)号规则,A1肯定被P2或者P3拿了,现在重新定义拿了A1的人为PA,没拿的为PB,第一位玩家仍然为P1。
8.(1)PB把A2三等分。
(2)PA从A2里选一块,我们叫他A21。
(3)P1选剩下两个小块,我们叫它A22。
(4)PB把最后一小块拿走,我们叫它A23。
可以证明,对于三个人,他们都不会嫉妒别人。接下来详细证明一下。整个过程分成两个部分,第一个部分是分配除去A2的其它蛋糕,第二个部分是分配A2。一个显然的事实是,第一个选的和第三个选的(切的人)这两个人肯定不会嫉妒,于是只需要分析第二个人就行了。
先看第一个部分。对于P2来说,两块最大的蛋糕一样大,所以无论P3选哪一个,他都能选到自己心目中最大的蛋糕。所以,在整个第一部分的分配中,三个人都不会嫉妒其它两个人。
再看第二个部分。第二个选的人是P1。对于P1来说,由于在第一部分的选择中他不可能选到A1,所以其实本来他就认为自己拿到的蛋糕是 1 3 \frac{1}{3} 31,现在还多分给了他一块,他肯定更不会嫉妒别人了。所以,在第二阶段的分配中,三个人也都不会嫉妒其他人。
这样就证明了Selfrige-Conway算法是“无嫉妒的”。
多人分配问题
当 n ≥ 4 n\geq4 n≥4时,问题将非常复杂。该问题已经找到了一种解法,但是由于解法过于复杂,这里就不做过多介绍了。
问题的研究意义
我们本质上研究的是一个关于公平分配资源的问题。纽约大学的博弈论学家兼政治学家Steven Brams说,蛋糕是一个可以分割的善意的隐喻,如土地、时间或有限资源。当把切蛋糕的见解应用于解决国际纠纷时,他说,“我们可能正在帮助世界找到解决方案。”