神经网络中的优化方法

前言

在之前的文章中介绍了神经网络中的损失函数。有了损失函数之后,就要求损失函数的最小值,并且需要求出参数(这个参数可能是神经网络中的 W W W b b b)在取什么值时,损失函数才能取到最小值。那么这个就是优化方法做的事情。这篇文章就来介绍一下神经网络中的优化方法。

梯度下降法

方法介绍

梯度下降法是一个非常简单的优化方法,也是后面要介绍的其它优化方法的基础。梯度下降法奠定了后来优化方法的基础,可以说,后面的大多数优化方法本质上都是在梯度下降法上进行修改得到的。

假设 g g g是我们求得的梯度(可能是一维的,也可能是高维的,取决于参数个数), η \eta η是我们人为设置的学习率(是一个超参数), θ \theta θ是我们需要更新的参数(不一定是一个参数,可能是多个参数组成的向量)。

梯度下降法的公式为 θ = θ − η ⋅ g \theta=\theta-\eta\cdot g θ=θηg

这个公式其实也很好理解,就是一个不断迭代的过程,不断往梯度下降的方向走,直到走到梯度为0的点,也就是最小值点。

方法优缺点

优点

算法简洁,在学习率取值恰当时,可以收敛到全局最优点(凸函数)或局部最优点(非凸函数)。

缺点

对超参数比较敏感,过小导致收敛速度过慢,过大又会越过极值点。

学习率除了敏感,有时还会因其在迭代过程中保持不变,很容易造成算法卡在鞍点的位置。

在较平坦的区域,由于梯度接近于0,优化算法会因误判,在还未到达极值点时,就提前结束迭代,陷入局部最小值。

动量法

方法介绍

动量法又称Momentum。

公式为 { v = α v + ( 1 − α ) g θ = θ − η ⋅ v \begin{cases} v=\alpha v+(1-\alpha)g\\ \theta=\theta-\eta\cdot v \end{cases} {v=αv+(1α)gθ=θηv

其中 α \alpha α表示动量参数, v v v表示累计梯度。跟梯度下降法相比,这里用 v v v代替了 g g g g g g仅仅表示当前这一点处的梯度,而 v v v表示了之前所有梯度的加权平均,而且迭代次数越靠后,其权重越高。这里的 v v v也可以看成动量,与经典物理学中的动量是一致的,就像从山上投出一个球,在下落过程中收集动量,小球的速度不断增加。

优缺点

优点

能帮助参数在正确的方向上加速前进,从而加速收敛。

由于动量具有惯性,所以可以跳出局部最小值。

更具有鲁棒性,使我们的训练过程更加稳定。

缺点

动量法的效果受动量因子和学习率等参数的影响较大。这些参数的选择需要一定的经验和调试,不当的参数设置可能导致算法性能下降。

Adagrad

方法介绍

Adagrad优化算法被称为自适应学习率优化算法。核心思想是为每个参数维护一个独立的学习率,并根据历史梯度信息动态调整学习率。跟其它方法的主要区别在于学习率并不是一个人为设置的定值,而是可以根据实际情况自动实时调整的。

公式为 { r = r + g 2 θ = θ − η r + δ ⋅ g \begin{cases} r=r+g^2\\ \theta=\theta-\frac{\eta}{\sqrt{r+\delta}}\cdot g \end{cases} {r=r+g2θ=θr+δ ηg

其中 δ \delta δ为小参数,避免分母为0,一般取值为 1 0 − 10 10^{-10} 1010

Adagrad的核心想法就是,如果一个参数的梯度一直都非常大,那么其对应的学习率就小一点,防止震荡;而一个参数的梯度一直都非常小,那么这个参数的学习率就大一点,使得其能够更快地更新。这就是Adagrad算法加快深层神经网络训练速度的核心。

优缺点

优点

自适应学习率使得不需要手动调整学习率。

更适合处理稀疏数据。由于稀疏特征在数据集中出现频率低,其梯度值往往较小。在Adagrad算法中,这些特征对应的学习率不会因为梯度小而迅速减小,反而能够保持相对较大的学习率,从而得到更多的更新机会。这对于模型捕捉稀疏特征的信息非常有利。

缺点

学习率 η \eta η总是在降低和衰减,使得后期学习率太低导致模型完全停止学习。

RMSProp

RMSProp的全称是Root Mean Square Propagation,均方根传播。该方法在Adagrad的基础上,进一步在学习率的方向上优化。

公式为 { r = λ r + ( 1 − λ ) g 2 θ = θ − η r + δ ⋅ g \begin{cases} r=\lambda r+(1-\lambda )g^2\\ \theta=\theta-\frac{\eta}{\sqrt{r+\delta}}\cdot g \end{cases} {r=λr+(1λ)g2θ=θr+δ ηg

其中, λ \lambda λ为衰减系数, r r r为累计平方梯度。

衰减系数的引入克服了Adagrad方法中, r r r一直增大的缺点。

Adam

方法介绍

Adam算法即自适应时刻估计方法(Adaptive Moment Estimation)。Adam继承了上面方法的优点,同时又规避了很多缺点,是目前神经网络中使用最广泛的优化方法。

公式为 { v = β 1 v + ( 1 − β 1 ) g r = β 2 r + ( 1 − β 2 ) g 2 v ^ = v 1 − β 1 t r ^ = r 1 − β 2 t θ = θ − η r ^ + δ ⋅ v ^ \begin{cases} v=\beta_1 v+(1-\beta_1)g\\ r=\beta_2 r+(1-\beta_2 )g^2\\ \widehat{v}=\frac{v}{1-\beta_1^t}\\ \widehat{r}=\frac{r}{1-\beta_2^t}\\ \theta=\theta-\frac{\eta}{\sqrt{\widehat{r}+\delta}}\cdot \widehat{v} \end{cases} v=β1v+(1β1)gr=β2r+(1β2)g2v =1β1tvr =1β2trθ=θr +δ ηv

可以在这里面看到许多其它方法的影子。第一行公式来源于动量法,第二行公式来源于RMSProp,第五行公式来源于梯度下降法。

第三行和第四行公式是修正公式,在这里进行一个简单的说明。这里的 t t t代表迭代次数。由于一开始设置的 v v v r r r都是0,所以在开始的时候, v v v r r r为了能更好地代表加权平均值,使得系数和为1,就需要做一个这样的处理。当迭代轮数增大时,这两个公式的分母趋近于1,就可以忽略不计了。

优缺点

优点

在实际应用中,Adam方法效果良好。与其他自适应学习率算法相比,其收敛速度更快,学习效果更为有效,而且可以纠正其他优化技术中存在的问题,如学习率消失、收敛过慢或是高方差的参数更新导致损失函数波动较大等问题。

缺点

虽然避免了手动调整学习率,但是又引入了动量参数 β 1 \beta_1 β1和衰减参数 β 2 \beta_2 β2两个超参数。我们一般设置 β 1 = 0.9 , β 2 = 0.999 \beta_1=0.9,\beta_2=0.999 β1=0.9,β2=0.999,但在有些情况下,这可能不是最好的选择。

AdamW

AdamW就是在Adam的基础上加上了权重衰减(Weight Decay)。

公式为 { v = β 1 v + ( 1 − β 1 ) g r = β 2 r + ( 1 − β 2 ) g 2 v ^ = v 1 − β 1 t r ^ = r 1 − β 2 t θ = θ − η r ^ + δ ⋅ v ^ − r λ θ \begin{cases} v=\beta_1 v+(1-\beta_1)g\\ r=\beta_2 r+(1-\beta_2 )g^2\\ \widehat{v}=\frac{v}{1-\beta_1^t}\\ \widehat{r}=\frac{r}{1-\beta_2^t}\\ \theta=\theta-\frac{\eta}{\sqrt{\widehat{r}+\delta}}\cdot \widehat{v}-r\lambda\theta \end{cases} v=β1v+(1β1)gr=β2r+(1β2)g2v =1β1tvr =1β2trθ=θr +δ ηv rλθ

该方法引入了超参数 λ \lambda λ。权重衰减的思想是每次更新参数后都对参数减去一个很小的值,防止参数过大,提高模型的泛化性。大名鼎鼎的BERT模型使用的优化方法就是AdamW。

总结

以上几种方法之间其实有一定的继承性,其关系由下图体现。
优化器

  • 10
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
神经网络算法优化方法是为了提高神经网络模型的性能和效果而进行的一系列技术手段。以下是几种常见的神经网络算法优化方法: 1. 梯度下降法(Gradient Descent):梯度下降法是一种常用的优化方法,通过计算损失函数对模型参数的梯度,并沿着梯度的反方向更新参数,以最小化损失函数。 2. 随机梯度下降法(Stochastic Gradient Descent,SGD):SGD是梯度下降法的一种变体,它每次只使用一个样本来计算梯度并更新参数,相比于传统的梯度下降法,SGD更加高效。 3. 动量法(Momentum):动量法引入了一个动量项,用于加速收敛过程。它通过累积之前的梯度信息,并在更新参数时考虑历史梯度的影响,可以帮助跳出局部最优解。 4. 自适应学习率方法(Adaptive Learning Rate):自适应学习率方法根据模型参数的更新情况自动调整学习率的大小。常见的方法有AdaGrad、RMSprop和Adam等。 5. 正则化(Regularization):正则化是一种常用的防止过拟合的方法。常见的正则化方法有L1正则化和L2正则化,它们通过在损失函数引入正则项来限制模型参数的大小。 6. 批归一化(Batch Normalization):批归一化是一种用于加速神经网络训练的技术,通过对每个批次的输入进行归一化,可以使得网络更加稳定和收敛更快。 7. Dropout:Dropout是一种常用的正则化方法,它在训练过程随机将一部分神经元的输出置为0,可以减少神经网络的过拟合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值