梯度下降法的示例

梯度下降法是一种用于寻找函数最小值的优化算法,常用于机器学习中模型参数的学习。下面,我将以一个简单的线性回归问题为例,来展示梯度下降法的工作原理。

问题描述

假设我们有一组数据点,希望通过这些数据点拟合一条直线 ( y = wx + b ),其中 ( w ) 是斜率,( b ) 是截距。我们的目标是最小化所有数据点预测值与实际值之间的差的平方和,即最小化损失函数(或称为成本函数) ( J(w, b) ):

[ J(w, b) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - (wx_i + b))^2 ]

这里 ( n ) 是数据点的数量,( (x_i, y_i) ) 是第 ( i ) 个数据点的坐标。

梯度下降步骤

  1. 初始化参数:首先,我们随机选择或设定初始的 ( w ) 和 ( b ) 的值,例如 ( w = 0 ), ( b = 0 )。

  2. 计算梯度:对于给定的 ( w ) 和 ( b ),我们需要计算损失函数 ( J ) 关于 ( w ) 和 ( b ) 的偏导数,这代表了损失函数在当前位置的梯度方向。梯度指向的是函数增长最快的方向,因此我们沿着负梯度方向移动以减少损失。

    对 ( w ) 的偏导数为:
    [ \frac{\partial J}{\partial w} = -\frac{1}{n} \sum_{i=1}^{n} (y_i - (wx_i + b))x_i ]

    对 ( b ) 的偏导数为:
    [ \frac{\partial J}{\partial b} = -\frac{1}{n} \sum_{i=1}^{n} (y_i - (wx_i + b)) ]

  3. 更新参数:根据梯度和学习率 ( \alpha ) 更新 ( w ) 和 ( b )。学习率决定了每次迭代时参数更新的幅度。

    更新规则为:
    [ w = w - \alpha \frac{\partial J}{\partial w} ]
    [ b = b - \alpha \frac{\partial J}{\partial b} ]

  4. 重复步骤2和3:重复计算梯度和更新参数的过程,直到满足某个停止条件,如梯度接近0、达到预定的迭代次数或损失函数的变化小于某个阈值。

示例过程

假设我们有以下简单的数据点:( (x_1, y_1) = (1, 2) ), ( (x_2, y_2) = (2, 3) ),学习率 ( \alpha = 0.01 ),并且初始值 ( w = 0 ), ( b = 0 )。

  • 第一步:计算初始的损失函数值(此步骤仅为说明,实际迭代中不需每次计算损失函数值)。
  • 第二步:根据上面的公式计算梯度。
  • 第三步:用梯度和学习率更新 ( w ) 和 ( b )。
  • 重复以上步骤,直到满足停止条件。

在实际操作中,我们会使用编程语言(如Python)和相应的数学库(如NumPy)来实现上述计算。如果你需要,我可以为你展示具体的计算代码示例。

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值