人工智能
文章平均质量分 58
易之阴阳
易之阴阳,量子纠缠,道之一体,缘起性空。问学ICT及AI与人的智慧。
展开
-
无人机技术应用
随着技术的不断进步和监管规定的完善,无人机的应用领域还在不断扩展,未来有可能涵盖更多的行业和日常生活中。原创 2024-06-06 15:48:41 · 485 阅读 · 0 评论 -
无人机技术详解
无人机技术是一个涉及多学科交叉的领域,包括但不限于航空工程、电子工程、计算机科学、材料科学和人工智能。原创 2024-06-06 15:47:46 · 1006 阅读 · 0 评论 -
自动移动机器人(AMR)技术详解
自动移动机器人(AMR)技术是一种复杂的集成系统,它结合了多种技术来实现自主导航、感知环境和执行任务。AMR技术不断发展,新的传感器、算法和通信技术的引入正在不断提升其自主性和效率,使得它们在各种应用场景中发挥更大的作用。原创 2024-06-04 14:10:21 · 1803 阅读 · 0 评论 -
自动移动机器人(AMR)
自动移动机器人(Autonomous Mobile Robots, AMR)是能够自主导航、感知环境并做出决策的机器人,它们不需要预先设定的路径或外部引导,而是依靠传感器、机器视觉、激光雷达等技术来识别周围环境并规划路线。AMR广泛应用于制造业、仓储物流、医疗保健、零售业等多个领域,提供自动化解决方案,提高效率,降低成本。随着5G网络的普及,AMR的性能将进一步提升,数据传输速度更快,延迟更低,能够支持更复杂的决策和更实时的反馈,进一步推动AMR在更多领域的应用。原创 2024-06-04 14:09:25 · 398 阅读 · 0 评论 -
人工智能最新技术详解二
工智能领域正在经历快速的发展,以下是一些最新的技术突破和趋势:1.合成数据的兴起:2.多模态人工智能:3.深度学习的进展:4.强化学习的新成就:5.自动化机器学习(AutoML)和元学习:6.可解释性与信任度增强:7.量子机器学习:原创 2024-06-04 14:07:49 · 412 阅读 · 0 评论 -
嫦娥六号登月用到的无线通信技术
该卫星部署在地月拉格朗日点L2位置,这个特殊的位置可以同时看到地球和月球背面,从而作为通信桥梁,使得嫦娥六号即使位于月球背面也能与地球上的控制中心保持连续的双向通信。嫦娥六号登月任务在无线通信技术方面面临了独特挑战,尤其是因为其计划在月球背面着陆和采样,而月球背面由于潮汐锁定效应,直接与地球的无线通信是不可能的。:考虑到深空通信带宽有限且数据传输成本高昂,嫦娥六号的通信系统集成高效的数据压缩算法,以减小数据体积,同时采用高级加密技术,确保传输的数据安全,防止在广袤的宇宙空间中被截取或干扰。原创 2024-06-03 08:19:00 · 911 阅读 · 0 评论 -
ICT技术在嫦娥六号的导航和着陆过程中起到什么关键作用?
着陆器装备了可见光相机和激光三维扫描仪,这些设备在下降阶段对月面进行快速而精细的扫描,识别并避开潜在的危险障碍物,如大石块或斜坡,确保着陆区域的安全性。:利用人工智能算法,嫦娥六号能够根据实时获取的环境数据进行路径规划和着陆策略的动态调整,比如在选择最终着陆点时考虑地形、光照条件等因素,确保着陆过程的最优化。综上所述,ICT技术不仅保障了嫦娥六号着陆的精确性和安全性,还大大提高了整个任务的自动化水平和科学效率,是实现这一历史性壮举的核心支撑。原创 2024-06-02 17:01:24 · 299 阅读 · 0 评论 -
嫦娥六号登月用到的ICT技术
由于月球背面与地球直接通信受阻,嫦娥六号利用了“鹊桥”中继卫星进行数据中继,保障了地球与月球背面探测器之间的稳定通信链路,实现了远距离、高数据率的通信。:集成人工智能的控制系统,使嫦娥六号具备一定程度的自主决策能力,能在复杂环境中自动调整飞行姿态、速度和航向,确保着陆过程的安全与精确。这些ICT技术的综合应用,展现了现代信息技术在深空探索领域的强大支撑作用,为嫦娥六号任务的成功实施奠定了坚实的基础。:面对有限的带宽资源,采用高效的数据压缩算法和传输协议,保证大量科学数据能够被有效、快速地传回地球。原创 2024-06-02 16:57:07 · 603 阅读 · 0 评论 -
人工智能在嫦娥六号的任务规划中起到什么作用?
人工智能辅助下的计算机视觉技术和高级算法帮助设计了复杂的轨道方案,包括嫦娥六号的入轨、月球捕获、月面着陆以及返回地球的轨道。这确保了发射过程的安全性和燃料效率,同时考虑到与月球位置的最优匹配。:基于人工智能的决策支持系统,嫦娥六号能够根据月表特征、地质分布等信息,智能地选择采样地点,优化采样策略,以实现最大化的科学回报,如高效的达到2000克月球样品的目标。:人工智能也参与到能源、通信资源的管理中,确保各项资源的高效分配和利用,延长探测器的工作寿命,确保关键任务阶段的资源充足。原创 2024-06-02 16:50:27 · 630 阅读 · 0 评论 -
嫦娥六号登月用到的人工智能技术介绍
虽然不是传统意义上的“人工智能”技术,但这一技术的实现依赖于高级算法和复杂的计算机模拟,可以视为智能化规划的一部分。:嫦娥六号在降落和采样过程中,利用了先进的传感器融合技术(如激光雷达、视觉传感器等)和机器学习算法,实现对月面环境的实时感知与分析,从而自主避开障碍物,确保安全着陆和采样操作。综上所述,嫦娥六号登月任务展示了人工智能技术在深空探索中的重要应用,不仅提高了任务的成功率,还为未来的太空探索提供了宝贵的技术基础和经验积累。原创 2024-06-02 16:45:19 · 874 阅读 · 0 评论 -
嫦娥六号登月用到的人工智能技术
在地面,科技人员进行了数百次的模拟表取、钻取采样试验。这些试验的数据通过人工智能技术被注入到嫦娥六号的系统中,帮助探测器进行智能化的判读分析,从而提高采样效率。嫦娥六号探测器在执行月球背面采样返回任务的过程中,应用了人工智能技术来提升采样效率和探测器的自主能力。:嫦娥六号在执行任务过程中会产生大量的数据,人工智能技术可以帮助快速处理这些数据,并提供决策支持,以应对月面复杂的环境和不可预测的情况。通过这些人工智能技术的应用,嫦娥六号能够更加高效、准确地完成月球背面的采样任务,并确保整个任务的顺利进行。原创 2024-06-02 16:31:24 · 341 阅读 · 0 评论 -
TorchServe site-packages结构详解
中的结构反映了其作为一个模型服务框架的组成部分,包括核心服务逻辑、模型处理、依赖管理和扩展能力。用户在开发和部署模型服务时,可能会直接或间接地与这些模块交互。TorchServe 在 Python 环境中运行,因此其相关的库和依赖项会安装在 Python 的。下面是对 TorchServe 在。综上所述,TorchServe 在。原创 2024-05-28 17:37:06 · 218 阅读 · 0 评论 -
TorchServe 打包 .mar
文件的目的是将模型、元数据和可能的依赖项整合在一起,以便于在 TorchServe 中部署。这个工具会将模型、元数据(包括模型处理类的定义)和任何依赖项打包到一起。文件已经打包完成,并可以被 TorchServe 加载和使用。请注意,根据实际需求,你可能需要调整。文件(Model Archive)是 TorchServe 用来存储和管理模型的标准格式。文件中的处理逻辑以适应模型的输入和输出格式。原创 2024-05-28 17:37:44 · 344 阅读 · 0 评论 -
TorchServe应用详解
orchServer是PyTorch生态系统中的一个工具,它提供了一种简单的方式来部署和管理PyTorch模型,以便在生产环境中进行高效的模型推理。TorchServer允许用户将训练好的模型封装为服务,通过RESTful API对外提供推理服务。原创 2024-05-28 14:12:07 · 426 阅读 · 0 评论 -
TorchServe详解和应用
TorchServer是PyTorch的一个组件,它是一个轻量级的服务框架,用于部署和管理PyTorch模型,以便在生产环境中提供高效、可扩展的推理服务。TorchServer提供了RESTful API,可以方便地与其他系统集成,支持模型热加载和热更新,确保模型的快速部署和更新。启动TorchServer后,你就可以通过HTTP请求调用模型服务了。使用TorchServer时,你需要创建一个自定义的处理类(如。,并实现预处理、模型推理和后处理方法。原创 2024-05-28 14:08:19 · 954 阅读 · 0 评论 -
免疫算法应用在TSP中的代码示例
免疫算法应用于旅行商问题(TSP)的实现相对复杂,涉及到种群初始化、亲和力评价、选择、突变、交叉等步骤。以下是一个基于Python的简化示例,展示如何使用免疫算法解决TSP问题。请注意,这只是一个基础框架,实际应用中需要根据具体需求调整参数和策略。这段代码定义了TSP问题的免疫算法实现,包括初始化种群、计算亲和力(即路径总距离)、选择和变异等关键步骤。实际应用中,你可能还需要考虑更复杂的操作,如克隆、局部搜索等,以及对算法性能的进一步优化。原创 2024-05-27 14:30:22 · 410 阅读 · 0 评论 -
免疫算法应用在机器学习中的代码示例
免疫算法在机器学习中的应用通常涉及解决优化问题,比如特征选择、参数优化、分类器设计等。下面是一个简化的免疫算法应用在机器学习特征选择中的Python示例。这个例子假设我们正在使用免疫算法来优化特征子集,以提升一个简单分类模型(例如逻辑回归)的性能。这段代码展示了如何使用免疫算法来寻找最优的特征子集以提升模型性能。它首先定义了一个免疫算法类,包含初始化种群、评估适应度、选择和变异等基本步骤。然后,利用这个类在Iris数据集上进行特征选择,并使用逻辑回归模型评估特征子集的效果。原创 2024-05-27 10:28:09 · 401 阅读 · 0 评论 -
免疫算法应用场景与代码示例
免疫算法因其独特的特性,适用于多种复杂优化问题,尤其在那些需要保持解的多样性和避免早熟收敛的场景。以下是一些典型的应用场景以及一个简化的Python代码示例来展示免疫算法的基本框架。原创 2024-05-26 14:12:00 · 466 阅读 · 0 评论 -
数据集IEEE DataPort
IEEE DataPort 是一个由电气和电子工程师学会(IEEE)提供的数据存储和搜索平台,旨在支持科研机构和个人的数据共享和管理需求。该平台提供了一系列功能,帮助研究人员上传、发现和访问数据集,促进了科学研究的可重复性和透明度。IEEE DataPort 作为一个专业的数据共享平台,为科研界提供了一个标准化的环境,促进了数据的开放和有效利用,有助于推动科学进步。原创 2024-05-21 17:47:39 · 1124 阅读 · 0 评论 -
人工智能在社会创新中的作用
人工智能在社会创新中的角色是多维度的,既带来了巨大的机遇,也提出了新的挑战。随着技术的不断演进,AI将继续在社会创新中扮演越来越重要的角色。人工智能在社会创新中的作用广泛而深远,它正在推动各个领域的发展,促进社会的创新变革。原创 2024-05-21 15:34:29 · 258 阅读 · 0 评论 -
人工智能和智能制造的交汇点
这些交汇点表明,AI正在改变智能制造的面貌,从传统的机械化生产转变为数据驱动、智能决策的现代生产模式,为企业带来更高的生产力、更好的产品质量和更强的竞争力。人工智能(AI)和智能制造的交汇点在于利用AI技术提升制造业的自动化、智能化水平,实现生产过程的优化和效率提升。原创 2024-05-20 18:01:03 · 212 阅读 · 0 评论 -
5G赋能人工智能和智能制造
通过这些方式,5G技术极大地促进了AI在智能制造领域的应用,推动了制造业的数字化、网络化和智能化转型。原创 2024-05-20 17:55:10 · 570 阅读 · 0 评论 -
机器学习技术搭建
确保在整个过程中,你遵循最佳实践,如数据分离(训练集、验证集、测试集)、代码版本控制(如Git)和文档记录,以便于后续的维护和复用。原创 2024-05-17 15:17:54 · 384 阅读 · 0 评论 -
Cityscapes数据集应用
数据量:包含2,975个训练图像,500个验证图像和500个测试图像。分辨率:图像分辨率通常为2048x1024像素。标注:每个图像都有像素级别的语义分割标注,其中行人和汽车还提供了实例分割信息。类别:30个不同的类别,包括建筑物、人行道、道路、天空等。原创 2024-05-17 07:00:00 · 859 阅读 · 0 评论 -
UCI Machine Learning Repository数据集介绍和应用
UCI Machine Learning Repository(UCI ML Repository)是加州大学欧文分校(University of California, Irvine)信息与计算机科学学院(ICS)维护的一个数据集集合,它是一个广泛使用的资源,用于机器学习和数据挖掘研究。这个库包含了大量的结构化数据集,涵盖了各种不同的领域,如社会科学、生物学、医学、工程学等。UCI ML Repository因其易于访问和丰富的数据集种类,成为了机器学习研究和教学的宝贵资源。原创 2024-05-16 10:26:46 · 1336 阅读 · 0 评论 -
ImageNet数据集介绍和应用
ImageNet是一个大规模的视觉数据库,由斯坦福大学的李飞飞教授领导的团队创建。这个数据库是基于WordNet的词汇结构,其中每个“Synset”(WordNet中的一个单词或短语的同义词集)都对应一组标注过的图像。ImageNet的主要目标是为计算机视觉研究提供一个标准化的测试床,尤其是图像分类和物体识别任务。请注意,由于数据集的大小,处理和训练ImageNet可能需要大量的计算资源和时间。在学术和工业界,许多研究者和公司都会使用云服务来加速这一过程。原创 2024-05-16 10:02:55 · 999 阅读 · 0 评论 -
开源的机器学习数据集
开源的机器学习数据集对于学习和研究机器学习算法非常重要。请记住,使用任何数据集时都要遵守数据集的使用许可和隐私政策。在实际项目中,确保数据集的质量和适用性至关重要。原创 2024-05-16 09:55:13 · 526 阅读 · 0 评论 -
tensorflow 模型库详细介绍
是一个官方的开源项目,它提供了多种预训练的机器学习模型、研究原型以及相关工具,覆盖了深度学习的多个领域。这个库的目的是为了促进研究和实践之间的交流,让开发者能够快速使用和定制最先进的模型。中的模型,你需要安装TensorFlow库,并根据模型库中的文档和示例代码来导入和使用模型。这些模型通常都有详细的使用说明,包括数据格式要求、模型参数设置等。不过,由于模型库持续更新,建议直接查看GitHub仓库(TensorFlow 模型库(原创 2024-05-15 07:00:00 · 706 阅读 · 0 评论 -
多模态对话系统的人工智能技术特点
多模态对话系统结合了多种感知和表达模态,如文本、语音、图像、视频和手势等,以提供更自然、更丰富的交互体验。这些特点共同构成了多模态对话系统的核心竞争力,使其在人机交互、客户服务、教育、娱乐、医疗健康等多个领域展现出广泛的应用潜力。原创 2024-05-14 16:00:28 · 546 阅读 · 1 评论 -
人工智能技术在行为分析上应用
人工智能技术通过深度学习、自然语言处理、计算机视觉等方法,为行为分析提供了强大的工具,不仅能够处理大规模数据,还能发现细微的行为模式,为教育、医疗、商业、安全等多个领域带来深刻的变革。随着技术的不断进步,AI在行为分析上的应用将会更加广泛和深入。原创 2024-05-14 15:54:25 · 514 阅读 · 0 评论 -
人工智能技术中的多模态融合(Multimodal Fusion)
人工智能技术中的多模态融合(Multimodal Fusion)是指将来自不同感官通道(如视觉、听觉、触觉、味觉和嗅觉)或不同类型的数据(如文本、图像、语音、视频等)结合起来,以提高系统的理解和推理能力。随着技术的进步,多模态融合在人机交互、智能家居、教育、娱乐、安全等领域都有广泛的应用前景,且随着物联网(IoT)和5G等技术的发展,这种融合将会更加无缝和智能化。原创 2024-05-13 14:41:27 · 842 阅读 · 1 评论 -
GitHUb 上较好的AI 开源项目
在GitHub上有许多高质量的人工智能(AI)开源项目,适合不同层次的开发者学习和贡献。这些项目不仅提供了强大的工具和框架,还拥有活跃的社区支持,文档齐全,是学习AI技术和贡献开源社区的绝佳起点。原创 2024-05-13 14:39:48 · 839 阅读 · 0 评论 -
常见优化算法详解
优化算法是机器学习和深度学习中不可或缺的一部分,它们负责调整模型的参数以最小化(或最大化)某个目标函数,即损失函数或目标函数。原创 2024-05-12 09:00:00 · 1552 阅读 · 0 评论 -
反向传播算法的具体求解示例
为了更好地理解反向传播算法的具体求解过程,让我们通过一个简化的示例来说明。我们将考虑一个非常基础的神经网络结构,它包含一个输入层、一个隐藏层和一个输出层。假设我们的网络只有1个输入节点、1个隐藏节点和1个输出节点,使用Sigmoid激活函数,以及一个简单的均方误差损失函数。原创 2024-05-11 14:06:34 · 595 阅读 · 0 评论 -
反向传播算法的具体求解过程
反向传播算法(Backpropagation)是训练神经网络时常用的一种高效算法,主要用于计算损失函数相对于网络中各权重参数的梯度,从而能够通过梯度下降等优化方法来更新这些参数。原创 2024-05-11 08:00:00 · 507 阅读 · 0 评论 -
Pytorch 在人脸识别中使用三元组损失函数的代码示例
请注意,实际使用时,你需要将这些向量与你的网络模型的输出相匹配,确保它们是从网络的最后几层提取的特征表示。此外,你还需要正确地构建训练数据,确保每个三元组都包含一个锚点、一个正样本(与锚点属于同一类)和一个负样本(与锚点属于不同类)。三元组损失函数旨在最小化正样本对与负样本对之间的距离,同时保持正样本对的距离小于一个阈值。参数设置了一个安全边际,确保正样本对之间的距离总是小于负样本对的距离加上这个边际。分别代表三元组的锚点、正样本和负样本。原创 2024-05-10 14:23:21 · 346 阅读 · 0 评论 -
梯度下降法的示例
梯度下降法是一种用于寻找函数最小值的优化算法,常用于机器学习中模型参数的学习。下面,我将以一个简单的线性回归问题为例,来展示梯度下降法的工作原理。原创 2024-05-11 07:00:00 · 469 阅读 · 0 评论 -
使用三元组损失函数
确保在整个过程中监控损失函数和模型性能,以便适时调整超参数,如学习率、margin值以及采样策略。使用三元组损失函数时,关键在于如何恰当地选取。原创 2024-05-10 14:14:17 · 213 阅读 · 0 评论 -
在人脸识别中应用三元组损失函数
在人脸识别中,三元组损失函数是一种常用的方法来训练模型,使得模型能够学习到将人脸图像映射到一个高维特征空间中,使得相同身份的人脸在这个特征空间中的距离尽可能小,而不同身份的人脸之间的距离尽可能大。通过这种方式,三元组损失函数促使模型学习到具有辨别力的人脸特征表示,从而实现高效的人脸识别。原创 2024-05-10 07:00:00 · 317 阅读 · 0 评论 -
常见的损失函数详解
损失函数(Loss Function)是机器学习和统计建模中的关键概念,它量化了模型预测值与实际观测值之间的差异。损失函数的选择直接影响模型的训练过程和最终性能。这些损失函数各有千秋,选择哪种取决于具体的应用场景、模型类型以及对误差的容忍度。在实践中,还可能结合正则化项(如L1或L2正则化)来避免过拟合,优化模型泛化能力。原创 2024-05-09 10:44:36 · 559 阅读 · 0 评论