事件抽取omniEvent

一、事件抽取算法-omnievent

OmniEvent 是一个功能强大的开源事件提取工具包,包括事件检测和事件参数提取。全面涵盖各种范式,并对广泛使用的英文和中文数据集提供公平、统一的评估。模块化实现使 OmniEvent 具有高度可扩展性。

github地址:https://github.com/THU-KEG/OmniEvent

二、直接调包进行测试

步骤一、安装omniEvent包

pip install OmniEvent

步骤二 、调用模型进行测试

from OmniEvent.infer import infer  
text = "2022年北京市举办了冬奥会" 
results = infer(text=text, task="EE") 
print(results[0]["events"])
"""[
    { "type": "组织行为开幕", "trigger": "举办", "offset": [8, 10], "arguments": [
            { "mention": "2022年", "offset": [9, 16], "role": "时间"},
            { "mention": "北京市", "offset": [81, 89], "role": "地点"},
            { "mention": "冬奥会", "offset": [0, 4], "role": "活动名称"},
        ]
    }
] """
#使用ED模式进行事件发现
text = "U.S. and British troops were moving on the strategic southern port city of Basra \ Saturday after a massive aerial assault pounded Baghdad at dawn" 
results = infer(text=text, task="ED")
print(results[0]["events"])
"""[
    { "type": "attack", "trigger": "assault", "offset": [113, 120]},
    { "type": "injure", "trigger": "pounded", "offset": [121, 128]}
]"""
#将ED模式得到的事件发现结果作为参数,使用EAE模式进行事件参数提取
results = infer(text=text, triggers=[("assault", 113, 120), ("pounded", 121, 128)], task="EAE") 
print(results[0]["events"])
"""
[
    { "type": "attack", "trigger": "assault", "offset": [113, 120], "arguments": [
            { "mention": "U.S.", "offset": [0, 4], "role": "attacker"},
            { "mention": "British", "offset": [9, 16], "role": "attacker"},
            { "mention": "Saturday", "offset": [81, 89], "role": "time"}
        ]
    },
    { "type": "injure", "trigger": "pounded", "offset": [121, 128], "arguments": [
            { "mention": "U.S.", "offset": [0, 4], "role": "attacker"},
            { "mention": "Saturday", "offset": [81, 89], "role": "time"},
            { "mention": "British", "offset": [9, 16], "role": "attacker"}
        ]
    }
]"""

这里的模型是直接将ED任务和EAE任务合并为EE任务,因此耗时较长,可将其分开,再得到ED任务结果后,选择满足条件的数据进行下一步EAE任务的测试

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值