《机器学习实战》学习(一)——k-近邻算法(kNN)

1、k近邻算法的理解

K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
可以简单的理解为是通过测量与不同特征值之间的距离来进行分类。书中采用欧式距离实现k近邻算法。

2、书中例子的Python实现与注释

# -*- coding: utf-8 -*-
"""
Created on Thu Sep  1 09:56:34 2016
@file kNN.py
@brief k-近邻算法的实现
@version V1.0
@author: 
-# 2016-09-01 创建此文件
"""
from numpy import * # 导入科学计算包 NumPy
import operator     # 导入运算符模块
import os
from os import listdir
"""
@brief k-近邻算法的实现 实现中采用欧氏距离公式
@param [in] inX 用于分类的输入向量,需要计算此向量属于哪一类
@param [in] dataSet 输入的训练样本集 
@param [in] labels 训练样本集的标签向量
@param [in] 用于选择最近邻居的数目
@return 返回输入向量所属类别
"""
def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0] #读取矩阵第一维的长度 即计算矩阵的行数 ;shape[1] 表示计算矩阵的列数
    #进行欧氏距离计算
    diffMat = tile(inX, (dataSetSize,1)) - dataSet #将输入向量inX重复 (dataSetSize,1)次是的与数据集一致,构成一个新的数组
    sqDiffMat = diffMat ** 2
    sqDistances = sqDiffMat.sum(axis = 1) #sum(axis = 1)就是将一个矩阵的每一行向量相加
    distances = sqDistances ** 0.5
    soredDistIndicies = distances.argsort() #将距离按升序排列 返回原始索引值
    classCount = {}
    #选出距离最近的k个值
    for i in range(k):
        voteIlabel = labels[soredDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
    #按照计数进行逆序排序(从大到小的顺序)
    sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
    return sortedClassCount[0][0]

"""
@brief 将文本记录转换为NumPy的解析函数 解决输入格式的问题
@param [in] filename 表示读入文件名
@return 返回样本矩阵和类标签向量
"""
def file2matrix(filename):
    fr = open(filename)
    arrayOLines = fr.readlines() #读取文本数据
    numberOfLines = len(arrayOLines) #获得文本行数
    returnMat = zeros((numberOfLines,3)) #初始化返回的样本矩阵 numberOfLines行 3列
    classLabelVector = [] #初始化返回的标签
    index = 0
    for line in arrayOLines:
        line = line.strip() #删除首尾空格
        listFromLine = line.split('\t') #将字符串进行分割
        returnMat[index,:] = listFromLine[0:3]
        classLabelVector.append(int(listFromLine[-1]))
        index += 1
    return returnMat,classLabelVector

"""
@brief 将特征值进行归一化处理 函数实现自动将数字特征值转化为0到1的区间
@param [in] dataSet 输入样本数据 特征值集
@return [out] normDataSet 归一化后的数据特征集
@return [out] ranges  变化范围
@return [out] minVals 最小变量值
"""
def autoNorm(dataSet):
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    ranges = maxVals - minVals #变化范围
    normDataSet = zeros(shape(dataSet)) #初始化一个矩阵跟原数据集一样的大小的值为0的矩阵
    m = dataSet.shape[0]#获得矩阵的行数
    normDataSet = dataSet - tile(minVals, (m,1))
    normDataSet = normDataSet/tile(ranges, (m,1))   #element wise divide
    return normDataSet, ranges, minVals

"""
@brief 测试算法
"""
def datingClassTest():
    hoRatio = 0.50      #hold out 10%
    datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')       #load data setfrom file
    normMat, ranges, minVals = autoNorm(datingDataMat)
    m = normMat.shape[0]
    numTestVecs = int(m*hoRatio)
    errorCount = 0.0
    for i in range(numTestVecs):
        classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
        print ("the classifier came back with: %d, the real answer is: %d" %(classifierResult, datingLabels[i]))
        if (classifierResult != datingLabels[i]): errorCount += 1.0
    print ("the total error rate is: %f" %(errorCount/float(numTestVecs)))
    print (errorCount)

3、k近邻算法优缺点总结

优点:精度高、对异常值不敏感、无数据输入假定
缺点:计算复杂度高、空间复杂度高
k-近邻算法是分类数据最简单最有效的算法,通过例子中可以看出,k近邻算法必须保存全部的数据集、如果训练数据集的很大,必须使用大量的存储空间。由于必须对数据集中的每个数据计算距离值,实际使用时可能非常耗时。
通过本节代码的学习,加入了大量的代码注释,让刚刚接触Python的编程人员来说是很重要的。通过查阅Python中提供函数的使用,加强了对Python使用技巧。所以我把自己对代码的理解写出来,希望大家一起学习,有不正确的地方还望大家给于指点。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值