G偏心距e(v):结点v和它相距最远的结点的距离。
偏心结点:若结点w满足d(W,V)= e(V),称w为v的偏心结点,偏心结点并不是相互的。
互为偏心的:两个结点一个都是另一个的偏心结点。
半径rad(G):图G中所有结点中最小的偏心距
中心C(G):具有最小偏心距的结点组成的集合
边界P(G):具有最大偏心距的结点组成的集合
直径diam(G):图G中所有结点中最大的偏心距
相对结点对/径向结点对:d(u,v)= diam(G)其中一个结点是另外一个结点的相对结点
直径路/半径路:中心结点集与其偏心结点间的测地线/相对结点间的测地线。
- 树与距离
- 设U,V,W是树中给定的三个结点,若ü与v邻接,那么| d(U,W)d(W,V)| = 1,换句话说,u,v,w的距离相差1
- 树的所有偏心结点都是端结点
- 树的所有相对结点都是端结点
- 树的边界由端结点组成
- 对任意树T,每条直径路都包括Ť的所有中心结点
剪枝:删去树Ť的所有端结点剪枝之后,树的所有偏心距都减一,树的中心不变
- 树的中心
- 对于任意图G,rad(G)
dian(G)
2rad(G)
- 树的中心是由一个结点,或者两个相邻结点组成
- 对任意树T,若| C(T)| = 1,那么典(T)= 2rad(T);若| C(T)| = 2,那么直径(T)= 2rad(T)-1
- 自补图与距离
- G'为G的补图若d(G)
3,那么diam(G')
3
- 若图G是自补图,那么diam(G)
3
结点v的分支:以v为一个端结点的极大子树结点v的度等于v处分支的数目如果v是端结点,那么v只有一个分支,就是整个树树中结点v处的权的英文指v所有分支中含的最大边数。
牛逼树的重心:具有最小权的结点组成的集合。
- 树的重心
- 树的重心是由一个结点或者两个邻接的结点组成
- 树的重心和中心可能互不相交
割点:图G是连通图,删除其中某个结点后G变为非连通的,该结点成为割点
桥/割边:若图G删除边uv后图的连通分量的个数增加,则称UV为桥/割边
图G的点连通度(G):把图G变为非连通图或平凡图至少要删除的结点数目,
点割集:把图变为非连通图需删除的结点的集合
若(G)
k,则称图G为k-连通的
边连通度(G):把G变为非连通图或平凡图至少要删除的边数据
边割集:把图变为非连通图需删除的边的集合
- 对于连通图G,
(G)
(G)
(G)
(G)表示所有结点的最小度
块:图ģ的极大连通子图若H是图G的块,则ħ自身不含割点,且满足,若再向H中增加结点,或把H扩大成更大的连通子图,那么ħ就会含有割点
- 连通图G的中心属于G的一个单独的块
中心块:包含中心结点的块
内部不相交紫外线路:连接u,v的两条路,除u,v外没有其他公共结点内部不相交路一定是边不相交的。
边不相交紫外线路:连接u,v的两条路,除u,v外没有其他公共边
若结点u,v在GS的两个不同的连通分量中,我们就称小号分离了结点u,v。S为结点集,或边集,或结点集和边集的混合集。也就是u,v S,而且每一条连接u,v的路都通过S.
- 门格尔定理:设U,V为图摹的两个不同的非邻接结点,那么,所有连接U,V的内部不相交路的数目等于分离U,V的最小结点集的结点数。
- 至少含有两个结点的图ģ是K-连通的,当且仅当每对结点间存在连接它们的ķ条内部不相交路
- 设U,V为图G的两个非邻接结点,那么所有连接U,V的边不相交路的数目等于分离U,V的最小边集(最小割)所含的边数。
应用
F图