用GoogleEarth选择遥感分类的训练样区

在遥感分类时,选择的训练样区的好坏直接决定了分类结果。本人摸索了下使用高分辨率的Googleearth上的图像可以用来选择训练样区的流程。


1、首先把你的研究区边界通过arcgis工具中的to kml,把研究区在Google earth显示。如下图


2、在Google上勾画自己想要的地物类型,如草地,灌丛,林地等多边形。勾画好”右击你的文件夹--将位置另存为“,kml文件


3、在arcgis中通过kml to layer工具转换为arcgis识别的图层,然后再数据export-shapefile格式(注意同类dissolved一下,还有投影转换)。如下图所示


4、在ENVI中打开你的样区矢量文件,然后导出为roi文件到你要进行分类的影像,转换为roi时选择第二项属性为你自己定义的地物类型。


5、在要分类的影像主窗口即可看到你做的roi。如下图所示。接下来就是分类了,此处不再赘述。



以上为个人摸索的方法,有不妥之处多提意见。给我留言。呵呵


### 获取适用于遥感图像语义分割的数据集 #### 使用现有公开数据集 对于希望快速启动项目的研究者来说,可以利用现有的公开数据集。一个典型例子是由Landsat 8 提供的场景图像及其手动提取的地物真实标签,专门用于云检测任务。此数据集中包含了38幅原始图像,经过预处理后被裁剪成了尺寸为384×384的小图斑块,总计有8400个训练样本和9201个测试样本[^1]。 #### 自定义创建数据集 当现成的数据无法满足具体应用需求时,则需自行构建定制化的数据集。这通常涉及到以下几个方面的工作: - **选择合适的遥感源**:根据研究目标选取适当类型的传感器数据作为基础素材。例如,如果关注植被分析,那么可能更倾向于使用包含可见光谱段以及近红外波段的信息丰富的多光谱影像。 - **采集高质量地面真值**:为了确保模型能够准确理解并分类不同类别的地表覆盖类型,必须精心准备详尽而精确的人工标注信息。这部分工作往往依赖专业的地理信息系统软件来完成,比如ArcGIS Pro这样的工具可以帮助高效地标记感兴趣区域,并生成所需的矢量文件格式以便后续处理[^2]。 - **前处理与增强**:收集到足够的原始资料之后,还需要对其进行一系列标准化操作,如辐射校正、几何配准等;另外也可以考虑采用数据扩增技术增加多样性,从而提高最终模型泛化能力。 #### 利用Google Earth Engine (GEE) 平台 作为一种便捷的选择,研究人员还可以借助像Google Earth Engine这样强大的云端服务平台来进行大规模时空序列数据分析。通过简单的脚本编程即可访问海量历史存档资源,并能轻松实现自动化批量下载功能。特别是针对那些需要长时间跨度或者大范围空间覆盖的应用场合而言,这种方法尤为适用[^3]。 ```javascript // JavaScript code snippet to load Landsat 8 data from GEE var dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_SR') .filterDate('2020-01-01', '2020-12-31'); print(dataset); ```
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值