Google Earth Engine 实现图像随机森林分类_遥感分类全流程详解

本文将通过一段完整的GEE代码,逐步讲解如何利用Sentinel-2影像和随机森林算法,实现地表覆盖分类。代码包含数据预处理、特征计算、样本训练、分类与精度评价等关键步骤,适合遥感入门学习!

目录

一、数据准备:加载研究区与遥感影像

1.1 研究区矢量边界

 1.2 Sentinel-2影像去云处理

二、特征工程:计算遥感指数与地形数据

2.1 计算NDVI、NDWI等指数

2.2 合成中值影像与融合DEM 

三、分类样本准备与模型训练

3.1 加载样本数据

3.2 提取样本点光谱特征

 3.3 随机森林分类器

四、精度评价与结果导出

4.1 混淆矩阵与精度指标

 4.2 分类结果可视化与导出

 五、完整代码流程图

六、常见问题解答


一、数据准备:加载研究区与遥感影像

1.1 研究区矢量边界
var aoi = ee.FeatureCollection("projects/yours/assets/yanjiuquyu");//引号内容替换为你的研究区域
var empty = ee.Image().toByte();
var outline = empty.paint({
  featureCollection: aoi,
  color: 0,
  width: 3
});
Map.addLayer(outline, {palette: "ff0000"}, "outline");
  • 功能:加载区域矢量边界,并在地图上以红色轮廓显示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

做科研的周师兄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值