Q Learning vs Policy Gradients

  1. Policy Gradients is generally believed to be able to apply to a wider range of problems. For instance, on occasions when the Q function (i.e. reward function) is too complex to be learned, DQN will fail miserably. 
  2. Policy Gradients is still capable of learning a good policy since it directly operates in the policy space.
  3. , Policy Gradients usually show faster convergence rate than DQN, but has a tendency to converge to a local optimal.
  4. Since Policy Gradients model probabilities of actions, it is capable of learning stochastic policies
  5. Policy Gradients can be easily applied to model continuous action space since the policy network is designed to model probability distribution,  DQN has to go through an expensive action discretization process
  6. one of the biggest drawbacks of Policy Gradients is the high variance in estimating the gradient
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值