Day07-数学基础-经济问题(DataWhale)

一、复利

复利公式
A m = A ( 1 + r ) m A_m = A(1+r)^m Am=A(1+r)m
A:本金,r:每一期的利率,m:复利的总期数, A m A_m Am:m期后的余额

  1. 年利率为r,一年支付1次,t年后的余额 A t = A ( 1 + r ) t A_t = A(1+r)^t At=A(1+r)t

  2. 一年支付n次,t年后的余额 A t = A ( 1 + r n ) n t A_t=A(1+\frac{r}{n})^{nt} At=A(1+nr)nt,当 n → ∞ n \rightarrow \infty n时, lim ⁡ n → ∞ A t = A e r t \lim_{n \rightarrow \infty}A_t = Ae^{rt} limnAt=Aert,称为连续复利

折现

复利的逆运算

二、导数的经济应用

1. 常见的函数
(1) 需求函数

表达式 x = φ ( p ) x=\varphi(p) x=φ(p) x:需求量;p:价格

含义:价格上升,需求量下降

价格函数 p = φ − 1 ( x ) p=\varphi^{-1}(x) p=φ1(x)

(2) 供给函数

表达式 x = ψ ( p ) x=\psi(p) x=ψ(p) x:供给量;p:价格

含义:价格上升,供给量上升

(3) 成本函数

成本表达式 C = C ( x ) = C 1 + C 2 ( x ) C=C(x)=C_1+C_2(x) C=C(x)=C1+C2(x) C:生产产品的总投入; C 1 C_1 C1:常量,固定成本; C 2 ( x ) C_2(x) C2(x):可变成本;x:产量

平均成本 A C = C ˉ = C X AC=\bar{C}=\frac{C}{X} AC=Cˉ=XC

(4) 收益函数

表达式 R = R ( x ) = p x R=R(x)=px R=R(x)=px p:销售单价;x:销售量

(5) 利润函数

表达式 L = L ( x ) = R ( x ) − C ( x ) L=L(x)=R(x)-C(x) L=L(x)=R(x)C(x)

2. 边际函数

f ′ ( x ) f'(x) f(x) f ( x ) f(x) f(x)边际函数

f ′ ( x 0 ) f'(x_0) f(x0) f ( x ) f(x) f(x) x 0 x_0 x0点的边际值

常规 f ′ ( x 0 ) = f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'(x_0)=\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} f(x0)=Δxf(x0+Δx)f(x0),取 Δ x = 1 \Delta x =1 Δx=1

边际值 f ′ ( x 0 ) = f ( x 0 + 1 ) − f ( x 0 ) f'(x_0)=f(x_0+1)-f(x_0) f(x0)=f(x0+1)f(x0),表示:在 x 0 x_0 x0点,当 x x x 改变一个单位时,函数 f ( x ) f(x) f(x)改变 ∣ f ( x 0 ) ∣ |f(x_0)| f(x0)个单位。 f ′ ( x 0 ) f'(x_0) f(x0) 的符号反映自变量的改变与因变量改变的方向

(1) 边际成本

总成本函数 C = C ( q ) C=C(q) C=C(q) (q:产量)

边际成本函数MC M C = C ′ ( q ) MC=C'(q) MC=C(q)

MC含义:当产量为 q 0 q_0 q0 时,产量 q q q 改变一个单位,总成本 C ( q ) C(q) C(q) 将改变 ∣ C ′ ( q 0 ) ∣ |C'(q_0)| C(q0) 个单位。

(2) 边际收益

MR M R = R ′ ( q ) MR=R'(q) MR=R(q)

(3) 边际利润

ML M L = L ′ ( q ) ML=L'(q) ML=L(q)

3. 弹性函数

弹性函数 = 因变量的变动比例 / 自变量的变动比例

弹性函数
η = l i m Δ x → 0 Δ y y / Δ x x = x f ( x ) f ′ ( x ) \eta = lim_{\Delta x \rightarrow 0}\frac{\Delta y}{y}/\frac{\Delta x}{x} = \frac{x}{f(x)}f'(x) η=limΔx0yΔy/xΔx=f(x)xf(x)
含义 η ∣ x = x 0 \eta|_{x=x_0} ηx=x0 表示在 x 0 x_0 x0处,当自变量 x x x 改变 1%时,因变量 y y y 将改变 ∣ η ∣ x = x 0 ∣ |\eta|_{x=x_0}| ηx=x0%

(1) 需求的价格弹性

表达式 η d = p φ ( p ) φ ′ ( p ) \eta_d=\frac{p}{\varphi(p)}\varphi'(p) ηd=φ(p)pφ(p) p:价格

含义:需求函数单调递减,所以 φ ′ ( p ) < 0 \varphi'(p)<0 φ(p)<0。当价格为p时,提价1%,需求量将降低 ∣ η d ∣ |\eta_d| ηd%

(2) 供给的价格弹性

表达式 η s = p ψ ( p ) ψ ′ ( p ) \eta_s=\frac{p}{\psi(p)}\psi'(p) ηs=ψ(p)pψ(p) p:价格

含义:需求函数单调递增,所以 ψ ′ ( p ) > 0 \psi'(p)>0 ψ(p)>0。当价格为p时,提价1%,供给量将增加 ∣ η s ∣ |\eta_s| ηs%

三、一阶常系数线性差分方程

1. 差分的定义

一阶差分 Δ y t = y t + 1 − y t = f ( t + 1 ) − f ( t ) \Delta y_t = y_{t+1}-y_t = f(t+1)-f(t) Δyt=yt+1yt=f(t+1)f(t)

二阶差分 Δ 2 y = Δ ( Δ y t ) = Δ y t + 1 − Δ y t = y t + 2 − 2 y t + 1 + y t \Delta^2y = \Delta (\Delta y_t)=\Delta y_{t+1}-\Delta y_t = y_{t+2}-2y_{t+1}+y_t Δ2y=Δ(Δyt)=Δyt+1Δyt=yt+22yt+1+yt

n阶差分 Δ n y t = ∑ k = 0 n ( − 1 ) k n ! k ! ( n − k ) ! y t + n − k \Delta ^ny_t=\sum_{k=0}^n (-1)^k\frac{n!}{k!(n-k)!}y_{t+n-k} Δnyt=k=0n(1)kk!(nk)!n!yt+nk

差分方程的阶:未知函数下标的最大差

2. 一阶常系数线性差分方程的求解

一般形式 y t + 1 + a y t = f ( t ) y_{t+1}+ay_t=f(t) yt+1+ayt=f(t)

(1) 齐次差分方程的通解

齐次差分方程: y t + 1 + a y t = 0 y_{t+1}+ay_t=0 yt+1+ayt=0
y c ( t ) = C ( − a ) t y_c(t) = C(-a)^t yc(t)=C(a)t
C:任意常数

(5) 非齐次差分方程的解

非齐次差分方程: y t + 1 + a y t = f ( t ) y_{t+1}+ay_t=f(t) yt+1+ayt=f(t)

非齐次差分方程的通解 = 齐次方程的通解 y c ( t ) y_c(t) yc(t) + 非齐次差分方程的一个特解 y t ∗ y_t^* yt

f ( t ) = d t P m ( t ) f(t)=d^tP_m(t) f(t)=dtPm(t) P m ( t ) = b 0 + b 1 t + . . . + b m t m P_m(t) =b_0+b_1t+...+b_mt^m Pm(t)=b0+b1t+...+bmtm

特解:

  • a + d ≠ 0 a+d \neq 0 a+d=0 y t ∗ = d t Q m ( t ) y_t^*=d^tQ_m(t) yt=dtQm(t)
  • a + d = 0 a+d=0 a+d=0 y t ∗ = t d t Q m ( t ) y_t^*=td^tQ_m(t) yt=tdtQm(t)

按照形式假设出 Q m = B 0 + B 1 t + . . . + B m t m Q_m=B_0+B_1t+...+B_mt^m Qm=B0+B1t+...+Bmtm代入差分方程,求解出对应的系数值

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值