Robotics学习笔记基础---刚体转动

Robotics学习笔记基础—刚体转动(1)

如图所示, xyz 为参考坐标系(惯性系,记为A), xabyabzab 为固连在刚体上的坐标系(即刚体的本体坐标系,记为B),本文所有的坐标系均为右手系,B相对于A的旋转矩阵用3x3的矩阵来描述,即:

Rab=[xabyabzab]

刚体绕点的旋转运动,虚线为固连在刚体上的坐标系
旋转矩阵的性质:
旋转矩阵有两个重要的性质, R3×3 为一旋转矩阵, r1,r2,r33 ,为 R 的列向量,列向量相互正交:
rTirj={0,ifij1,ifi=j

R 为正交矩阵,RTR=RRT=I detR=rT1(r2×r3)=1
所有满足上述性质的 3×3 矩阵的集合记为 SO(3) SO 是special orthogonal的简写。
n×n 中的旋转矩阵定义为:
SO(n)={Rn×n:RRT=I,detR=+1}
.
我们主要对 n=3 的情况感兴趣。
SO(3)3×3 是矩阵相乘操作下的群,对于一个集合 G 被称为群,如果定义在其元素之上的二值操作满足以下条件:
1、运算封闭:若 g1,g2G ,则 g1g2G .
2、单位性:对于所有 gG ,存在一个单位元素 e ,使得ge=eg.
3、可逆性:对于任意 gG 存在唯一一个逆 g1G ,使得 gg1=g1g=e .
4、结合律:如果 g1,g2,g3G ,则 (g1g2)g3=g1(g2g3)
对于 SO(3) ,注意到:
1、若 R1,R2SO(3) ,则有 R1R2SO(3) ,因为
R1R2(R1R2)T=R1R2RT2RT1=I

det(R1R2)=det(R1)det(R2)=+1

2、单位矩阵为其单位元素.
3、 R 的逆RTSO(3).
4、矩阵相乘满足群操作的结合律,即 (R1R2)R3=R1(R2R3) .
因此, SO(3) 为一个群,以单位阵为单位元素,矩阵相乘为群操作子,将 SO(3) 作为 3 的旋转群。
任何一个绕固定坐标系旋转的刚体都有唯一一个 RSO(3) 与之对应,旋转群 SO(3) 为系统的配置空间,系统的轨迹为一曲线 R(t)SO(3)t[0,T] ,对于一个系统,如果所有元素 xQ 均对应于一个有效的系统配置,而且系统的每一个配置可以用Q中的唯一元素表示,则称Q为系统的配置空间。
旋转矩阵 RSO(3) 也可以用于坐标变换,将一个点的坐标从一个坐标系变换到另外一个坐标系。如图1中的点q,令 qb=[xb,yb,zb] 为q在B下的坐标,相对于A的坐标可以通过下式计算:
qa=xabxb+yabyb+zabzb

即:
qa=Rabqb
换而言之, Rab 可以看做是 3 3 的映射,将B中的点旋转至A。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值