海康 VisionMaster 学习笔记(金属缺陷检测)

本文是海康 VisionMaster 金属缺陷检测的学习笔记。介绍了检测金属盖是否存在及位置是否正确的方法,包括利用‘本地图像’模块加载图片,用‘特征匹配’定位支架,‘位置修正’,找小圆孔并测量距离判断圆盘是否放歪,通过亮度检测圆盘有无,最后用逻辑‘与’运算合并判断标准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

海康 VisionMaster 学习笔记(金属缺陷检测)

这个例子检测是否存在金属盖,金属盖位置是否正确。样本图像如下:
在这里插入图片描述下面这张图片是金属盘缺失的照片。
在这里插入图片描述还有一张金属盘没有缺失,但是位置放偏了。判断圆盘是否放偏了可以通过圆盘上两个小孔相对下面两个三角形的位置来确定。
在这里插入图片描述首先是利用‘本地图像’模块加载我们的4张图片。

然后用‘特征匹配’来定位圆盘下面的支架,这里我们选择支架左下的小三角形。这里的掩模板用了个三角形,这个三角形是用那个样子像钢笔的工具画的。为了加快特征匹配的速度,我们限制转角为 -10到10度。
在这里插入图片描述特征匹配之后就是’位置修正’。这个模块比较简单,没什么说的。

之后我们来找左边的那个小圆孔。这步很简单,ROI 的区域可以稍微选大点。因为圆盘如果放歪了,可能这个小圆孔会偏的比较多。
在这里插入图片描述找到圆之后量一下这个圆到下面的小三角的距离,通过这个距离可以判断圆盘是否放歪了。
在这里插入图片描述之后是检测圆盘有无,这个可以通过圆盘上的反光来确定。也就是通过亮度来确定,有圆盘的时候比较亮。
在这里插入图片描述
最后要把两个判断标准用逻辑‘与’运算合并在一起。需要注意的是我们两个条件都是 float 型变量,所以要选择 float ,否则会找不到这两个变量。
在这里插入图片描述至此,这个程序就写完了。

### 基于 VisionMaster 的瑕疵检测实现方法 #### 工具与环境准备 在使用 VisionMaster 软件进行瑕疵检测之前,需确保已安装并配置好相应的开发环境。VisionMaster 是一款功能强大的机器视觉软件工具包,支持多种工业应用场景下的图像处理和分析任务[^1]。 #### 数据采集与预处理 为了构建有效的瑕疵检测模型,数据的质量至关重要。通常情况下,需要收集大量正常样品以及带有不同类型的瑕疵样本作为训练集。这些样本应覆盖实际生产环境中可能出现的各种情况。对于金属表面缺陷检测而言,可以参考海康威视提供的学习资料中的具体案例[^2]: - **加载本地图片**:通过“本地图像”模块导入预先拍摄好的标准品及不良品照片; - **标注目标区域**:明确指出哪些部分属于合格范围而哪些则代表不合格状态; #### 特征提取与算法选择 完成上述准备工作之后,则进入核心环节——特征工程阶段。此过程旨在从原始像素值中挖掘出有助于区分良莠的关键属性。针对不同的材质特性可以选择合适的算子组合来进行边缘增强、形态学运算等操作以便更好地凸显潜在问题所在之处。例如,在识别圆形物体是否有位移现象时,可通过计算其几何中心坐标相对于固定参照物的距离偏差来判定是否超出允许误差界限。 #### 结果评估与优化调整 最后一步是对整个流程的效果进行全面验证,并根据反馈不断改进直至达到预期性能指标为止。这可能涉及到重新设计某些参数设置或者引入更先进的技术手段如深度学习框架等等。 ```python import cv2 from visionmaster import ImageProcessor, FeatureExtractor def detect_defects(image_path): processor = ImageProcessor() extractor = FeatureExtractor() image = cv2.imread(image_path) processed_image = processor.preprocess(image) # 图像预处理 features = extractor.extract(processed_image) # 提取特征 is_defective = evaluate(features) # 判断是否存在缺陷 return is_defective def evaluate(feature_vector): """模拟评价逻辑""" threshold = determine_threshold() # 设定阈值函数 score = calculate_score(feature_vector) # 计算得分函数 if score > threshold: return True # 表明存在缺陷 else: return False # 否则视为无异常状况发生 ```
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值