海康 VisionMaster 学习笔记(金属缺陷检测)

海康 VisionMaster 学习笔记(金属缺陷检测)

这个例子检测是否存在金属盖,金属盖位置是否正确。样本图像如下:
在这里插入图片描述下面这张图片是金属盘缺失的照片。
在这里插入图片描述还有一张金属盘没有缺失,但是位置放偏了。判断圆盘是否放偏了可以通过圆盘上两个小孔相对下面两个三角形的位置来确定。
在这里插入图片描述首先是利用‘本地图像’模块加载我们的4张图片。

然后用‘特征匹配’来定位圆盘下面的支架,这里我们选择支架左下的小三角形。这里的掩模板用了个三角形,这个三角形是用那个样子像钢笔的工具画的。为了加快特征匹配的速度,我们限制转角为 -10到10度。
在这里插入图片描述特征匹配之后就是’位置修正’。这个模块比较简单,没什么说的。

之后我们来找左边的那个小圆孔。这步很简单,ROI 的区域可以稍微选大点。因为圆盘如果放歪了,可能这个小圆孔会偏的比较多。
在这里插入图片描述找到圆之后量一下这个圆到下面的小三角的距离,通过这个距离可以判断圆盘是否放歪了。
在这里插入图片描述之后是检测圆盘有无,这个可以通过圆盘上的反光来确定。也就是通过亮度来确定,有圆盘的时候比较亮。
在这里插入图片描述
最后要把两个判断标准用逻辑‘与’运算合并在一起。需要注意的是我们两个条件都是 float 型变量,所以要选择 float ,否则会找不到这两个变量。
在这里插入图片描述至此,这个程序就写完了。

### 海康威视VM软件中的缺陷检测方法与工具 #### 缺陷检测的功能特点 海康威视的VM算法开发平台集成了多种用于缺陷检测的方法和工具,旨在帮助客户快速构建并部署高效的视觉检测解决方案[^1]。 #### 主要使用的工具和技术 - **模板匹配技术**:通过预先设定的标准样本作为模板,在待检产品上寻找最相似的部分来判断是否存在异常。 - **灰度分析**:基于像素级别的亮度变化来进行表面瑕疵识别,适用于颜色均匀的产品表面质量控制。 - **边缘提取与形态学操作**:利用物体轮廓特征差异捕捉细微结构上的破损情况,如裂纹、划痕等。 - **分类器训练**:支持用户导入带有标签的数据集以建立特定类型的缺陷模型,从而提高自动判别的准确性。 对于具体的实施过程而言: ```python import cv2 from hikvision_vm import DefectDetectionTool # 假设这是Hikvision VM提供的Python接口库 def detect_defects(image_path): image = cv2.imread(image_path) detector = DefectDetectionTool() result = detector.detect(image) return result ``` 此段伪代码展示了如何调用假设存在的`hikvision_vm`库下的`DefectDetectionTool`类完成一次简单的缺陷检测流程。实际应用中可能涉及更复杂的配置选项调整以及预处理步骤。 #### 平面检测模块的应用场景扩展至缺陷检测 除了上述通用手段外,针对某些特殊需求还可以借助于专门设计好的子模块——例如平面检测模块能够有效评估目标区域内小面积平坦程度的变化趋势,进而发现诸如凹凸不平等潜在质量问题[^3]。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值