《深度学习可直接从组织学预测胃肠道癌微卫星不稳定性》

一项研究表明,深度学习算法可以从组织学图像中直接预测胃肠道癌的微卫星不稳定性(MSI),无需基因检测或免疫组化。这种方法可以降低成本,简化MSI筛查,有助于更多患者获取免疫治疗建议。研究在多个数据集和癌症类型中验证了模型的准确性,并在多中心数据集上实现了较高的AUC值。
摘要由CSDN通过智能技术生成

《Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer》

paper链接:https://www.nature.com/articles/s41591-019-0462-y
MATLAB code: https://github.com/jnkather/MSIfromHE
作者:
Jakob Nikolas Kather, Alexander T. Pearson, Niels Halama, Dirk Jäger, Jeremias Krause, Sven H. Loosen, Alexander Marx, Peter Boor, Frank Tacke, Ulf Peter Neumann, Heike I. Grabsch, Takaki Yoshikawa, Hermann Brenner, Jenny Chang-Claude, Michael Hoffmeister, Christian Trautwein & Tom Luedde
单位:

  • 德国亚琛工业大学(RWTH Aachen)
  • 德国癌症研究中心(DKFZ)
  • 德国转化癌症研究联合会(DKTK)
    海德堡国家肿瘤疾病中心(NCT)
    期刊:《Nature Medicine》
    目前被引用次数:104
    在线发布时间:2019年6月3日

MSI与dMMR是什么关系? 因为所以的关系!
因为错配修复基因功能缺陷(dMMR)导致错配修复蛋白的功能异常,所以DNA复制过程中随机产生的错误无法被正常修复,进而出现了微卫星不稳定性高(MSI-H)的现象。临床一般默认dMMR≈MSI-H

  • 癌细胞中DNA的某些部位(所谓的微卫星,MS)变异,可以影响胃肠道肿瘤患者对免疫治疗的应答。
  • 微卫星不稳定(microsatellite instability,MSI)/dMMR是在胃肠道肿瘤患者经常提及的一个指标,这个指标可以决定胃肠道肿瘤患者对免疫治疗的反应是否比较好。

传统的MSI检测方法问题:

  • 需要进行免疫组化
  • 需要进行基因分析
  • 不仅需要增加额外的成本,而且在临床实践中难以推广至每一个患者。

深度学习算法预测MSI的优点:

  • 不要基因检测
  • 不需要免疫组化。
  • 直接从HE(苏木精 — 伊红染色切片,HE切片)切片图像中预测MSI。
  • 价格便宜如果进三级医院:相比常规的4个dMMR IHC检测,通过该项人工智能阅片可以将每个样本从 2520美元(美国成本,欧洲会较美国便宜点)的花费降低到 5.78+1.13 美元。如果不进三级医院:医疗中心前期阅片投入达到30万美元,每天可阅片800张,人工智能计算服务投入3万美元,每天可检测80名患者。
  • 这种简便的MSI普筛方法有望为更多的胃肠道肿瘤患者提供免疫治疗建议

虽然免疫疗法现在是癌症治疗的基石,但胃肠道癌症患者通常不会像其他实体恶性肿瘤(如黑色素瘤或肺癌)患者那样受益,除非该肿瘤属于微卫星不稳定(MSI)肿瘤组。在这一组中,约占胃(胃)腺癌(Stad)和结直肠癌(Crc)的15%免疫检查点抑制剂显示出相当大的临床益处,因此最近得到了食品和药物管理局(FDA)的批准。MSI可以通过免疫组织化学或遗传分析来鉴定,但不是所有的患者都进行了MSI筛查,除非是在大容量的三级护理中心。因此,一大批免疫治疗的潜在应答者可能得不到及时的免疫检查点抑制剂治疗,从而错失了疾病控制的机会。

深度学习在一些医学数据分析任务中表现优于人类,并且可以使用肺、前列腺和大脑肿瘤的图像来预测患者的生存和肿瘤中的突变。为了促进普遍的MSI筛查,我们调查了深度学习是否可以直接从H&E染色的组织切片中预测MSI状态。首先,我们在一组三类胃肠癌组织(n=94张幻灯片,n=81名患者,图1a-c,扩展数据图1)上比较了五个卷积神经网络。残差学习卷积神经网络Resnet18是一种有效的肿瘤检测器,其曲线下的样本外面积(AUC)>0.99,这代表了在当前的技术水平的改进。另一个结果18(图1,d)经培训,从癌症基因组图谱(TCGA):n=315福尔马林固定石蜡包埋(FFPE)、STAD样本(TCGA-STAD),n=360 CRCFFPE样本(TCGA-CRC-DX)和n=378个CRC快速冷冻样本(TCGA-CRC-KR;补充表1)中,对大型患者队列中的MSI与微卫星稳定性(MSS,图1E)进行了分类:n=315个福尔马林固定的石蜡包埋(FFPE)样本(TCGA-STAD),n=360个CRC16的FFPE样本(TCGA-CRC-DX)。

肿瘤组织被自动检测,然后细分成100,570(TCGA-STAD)、60,894(TCGA-CRC-KR)和93,408(TCGA-CRC-DX)颜色归一化的瓷砖,其中深度学习模型对MSI进行评分。在TCGA-CRC-DX测试队列中,真实的MSI图像切片(如补充表2中所定义)MSI得分中位数为0.61(95%置信区间(CI),0.12-0.82;图2a),而真实的MSS切片的MSI得分为0.29(95%可信区间,0.08-0.57;双尾t检验P=1.1×10−6;图2b)。在TCGA-CRC-KR测试队列中,在TCGA-CRC-KR测试队列中,MSI的切片MSI得分为0.50(95%CI,0.17-0.80),MSS切片的得分为0.22(95%CI,0.0 6~0.6 0;P=7.3×10−11),表明我们的方法可以很好地区分快速冷冻和FFPE样本中预测MSI的特征。用于MSI检测的患者水平AUC在TCGA-STAD中为0.81(95%置信区间,0.69-0.90),在TCGA-CRC-KR中为0.84(95%可信区间,0.73-0.91),在TCGA-CRC-DX中为0.77(95%可信区间,0.62-0.87)(扩展数据图2a;MSI频率列在补充表3中)。

多中心DACHES研究被用作外部验证集(n=378名患者)。使用自动肿瘤检测器和TCGA-CRC-DX上训练的MSI检测器(图2c),患者水平的AUC为0.84(95%CI,0.72-0.92)(图2d)。对FFPE样本进行训练并对FFPE样本进行训练的模型优于对冷冻样本进行训练并对FFPE样本进行训练的模型。类似地,在CRC样本上训练并用于CRC样本的模型比在STAD样本上训练并在CRC样本上使用的模型执行得更好(扩展数据图2a)。分析我们提出的方法:我们对来自日本横滨的185例胃癌患者(KCCH队列)进行了MSI检测。亚洲人的胃癌与非亚洲人的胃癌有着非常不同的组织学和临床病程。在TCGA-STAD(大约80%非亚洲人)上训练的分类器在KCCH队列中的AUC达到0.69(95%CI,0.52-0.82)(0%非亚洲人;扩展数据图2a)。因为MSI是一种泛肿瘤生物标志物,具有超越胃肠道癌症的临床用途,我们在MSI高发的子宫内膜癌(UCEC21,n=327名患者)样本中额外训练和测试了我们的方法,在坚持治疗的患者中,MSI检测的AUC为0.75(95%CI,0.63-0.83;扩展数据图2a)。

虽然我们的方法在一系列人类肿瘤,取得了稳健的性能,并超过了之前报道的从组织学预测分子特征的性能,我们的实验指出了一些局限性。分类能力不一定超出训练集中存在的癌症类型和种族。更大的训练队列可能会提高分类性能,因为网络可以学习罕见的形态变体。另一个限制是所需的组织大小。为了定义其下限,我们生成了“虚拟活检”,并发现在边缘长度为256µm的大约100块方块上表现平稳,这表明活检足以用于MSI预测(扩展数据图2b,c)。

在这里插入图片描述
图1|H&E组织学中的肿瘤检测和MSI预测。
a 训练卷积神经网络(CNN)作为STAD(胃腺癌)及CRC(结直肠癌)的肿瘤细胞检测,基准尺:4mm;
b)肿瘤染色区域分成小方块;
c)颜色归一化,并将其分类为MSI和MSS,基准尺 256µm;
d)对另一个网络进行训练, 用于MSI和MSS分类的训练;
e) 上述自动化流程应用到留存的患者的数据集。

在这里插入图片描述

在这里插入图片描述
M S I 状 态 样 本 的

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值