小结:元学习

本文详细介绍了元学习的概念,包括基于度量、模型和优化的三种主要方法,探讨了各自的优缺点,并列举了典型的数据集。元学习旨在通过在多任务中学习通用规律,实现快速适应新任务的能力。
摘要由CSDN通过智能技术生成

1 元学习

1.1 定义

两层学习模型,内层学习单个新任务,外层积累多个任务的规律(先验封装),促进内层的快速学习
在这里插入图片描述

1.2 术语&符号

在这里插入图片描述

2 元学习方法

2.1 基于度量的元学习

2.1.1 定义

学习有效的度量空间表示两个集合样本的相似性,然后基于度量空间快速更新适应新任务中。
在这里插入图片描述
k是相似度核

2.1.2 模型

2015-Koch-孪生网络(SiamenseNet)
2016-Vinyals-匹配网络(MatchingNet)
2017-Vinyals-原型网络(PrototypicalNet)
2017-Garcia-图神经网络(GNN,Graph Neural Network)
2017-Shyam-注意循环比较(ARC,Attentive Recurrent Comparator)
2018-Sung-关系网络(RelationNet)

GNN包括孪生和原型

2.1.3 优缺

优点:
(1)基于相似性的预测,思想简单
(2)任务量少时,网络不需要进行特定任务的调整,预测速度快

- 缺点:
(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值