1 元学习
1.1 定义
两层学习模型,内层学习单个新任务,外层积累多个任务的规律(先验封装),促进内层的快速学习
1.2 术语&符号
2 元学习方法
2.1 基于度量的元学习
2.1.1 定义
学习有效的度量空间表示两个集合样本的相似性,然后基于度量空间快速更新适应新任务中。
k是相似度核
2.1.2 模型
2015-Koch-孪生网络(SiamenseNet)
2016-Vinyals-匹配网络(MatchingNet)
2017-Vinyals-原型网络(PrototypicalNet)
2017-Garcia-图神经网络(GNN,Graph Neural Network)
2017-Shyam-注意循环比较(ARC,Attentive Recurrent Comparator)
2018-Sung-关系网络(RelationNet)
GNN包括孪生和原型
2.1.3 优缺
优点:
(1)基于相似性的预测,思想简单
(2)任务量少时,网络不需要进行特定任务的调整,预测速度快
- 缺点:
(1)