Manus开源了,使用OWL 3分钟打造自己的ai员工!(保姆级教程)



你是否还在被海量信息淹没,每天在各种软件、网页间来回切换,效率低下?🤯 别担心!今天给大家安利一款国产AI神器——OWL智能体🦉,功能强大到爆炸,直接对标GPT-4,关键是完全开源免费!小白也能轻松上手,3分钟变身效率达人!🚀🚀🚀

一、OWL到底有多牛?一句话概括:只有你想不到,没有它做不到!

先别急着划走,看看OWL的这些逆天功能,保证让你惊掉下巴!😱

1.  信息检索,快过闪电⚡:还在用百度?OUT啦!OWL直接调用维基百科、谷歌搜索等,实时信息秒级获取,比你自己手动搜索快N倍!

2.  多模态处理,样样精通😎:无论是网上的视频、图片,还是本地的音频文件,OWL都能轻松处理,帮你提取关键信息,再也不用对着一堆素材发愁了!
   



3.  浏览器操作,自动驾驶🌐:还记得那些年,我们手动复制粘贴、点击网页的痛苦吗?OWL直接帮你搞定!基于Playwright框架,页面滚动、点击、输入、下载,甚至历史回退,统统不在话下,简直就是浏览器里的“自动驾驶”!

4.  文件解析,效率神器📄:还在为Word、Excel、PDF、PPT里的信息提取头疼?OWL一键帮你搞定!内容转文本、转Markdown,分分钟的事儿!从此告别手动整理,效率翻倍!

5.  代码执行,程序员福音💻:写好的Python代码,不用打开IDE,OWL直接帮你运行!还提供丰富的工具包,Arxiv论文检索、GitHub交互、Google学术搜索...你想要的,它都有!

二、99%的人不知道!OWL竟然还藏着这么多宝藏工具! 🧰

除了上面这些核心功能,OWL还内置了海量工具包,满足你的各种需求:

*   学术党必备:ArxivToolkit、GoogleScholarToolkit、SemanticScholarToolkit,帮你轻松搞定文献检索、学术搜索!
*   打工人必备:ExcelToolkit、NotionToolkit,帮你处理表格、管理笔记,告别加班!
*   创意达人必备:DalleToolkit、ImageAnalysisToolkit、VideoAnalysisToolkit,帮你生成图片、分析图像和视频,灵感爆棚!
*   生活小助手:GoogleMapsToolkit、WeatherToolkit,帮你查询地图、天气,生活更便捷!
*   ......

 

三、手把手教你安装OWL,3种方法任你选!小白也能轻松搞定!

这么强大的工具,安装起来会不会很麻烦?🤔 别担心,OWL提供了多种安装方式,总有一款适合你!

1.  UV大法(强烈推荐👍)

# 克隆 GitHub 仓库
git clone https://github.com/camel-ai/owl.git

# 进入项目目录
cd owl

# 如果你还没有安装 uv,请先安装
pip install uv

# 创建虚拟环境并安装依赖
uv venv .venv --python=3.10

# 激活虚拟环境 (macOS/Linux)
source .venv/bin/activate
# 激活虚拟环境 (Windows)
.venv\Scripts\activate

# 安装 CAMEL 及其所有依赖
uv pip install -e .

# 完成后退出虚拟环境
deactivate

2.  传统 venv + pip

# 克隆 GitHub 仓库
git clone https://github.com/camel-ai/owl.git

# 进入项目目录
cd owl

# 创建虚拟环境 (Python 3.10, 也适用于 3.11、3.12)
python3.10 -m venv .venv

# 激活虚拟环境 (macOS/Linux)
source .venv/bin/activate
# 激活虚拟环境 (Windows)
.venv\Scripts\activate

# 从 requirements.txt 安装
pip install -r requirements.txt

3.  Conda党看这里

# 克隆 GitHub 仓库
git clone https://github.com/camel-ai/owl.git

# 进入项目目录
cd owl

# 创建 conda 环境
conda create -n owl python=3.10

# 激活 conda 环境
conda activate owl

# 安装(推荐)
pip install -e .
# 或者从 requirements.txt 安装
# pip install -r requirements.txt

# 完成后退出 conda 环境
conda deactivate

四、配置API密钥,开启OWL的超能力!🔑

OWL需要各种API密钥来连接不同的服务。别担心,配置起来超级简单!

1.  使用.env文件(推荐👍)

cd owl
cp .env_template .env



然后,用你喜欢的文本编辑器打开`.env`文件,把你的API密钥填进去就OK啦!

注意:如果你只想体验最小示例(`run_mini.py`),只需要配置LLM API密钥(比如`OPENAI_API_KEY`)就行。

2.  直接设置环境变量

如果你不想用`.env`文件,也可以直接在终端里设置环境变量:

macOS/Linux (Bash/Zsh):

export OPENAI_API_KEY="你的-openai-api-密钥"

Windows (命令提示符):

OPENAI_API_KEY="你的-openai-api-密钥"

Windows (PowerShell):

= "你的-openai-api-密钥"

五、懒人福音!Docker一键部署,告别繁琐配置!🐳

如果你是Docker爱好者,那简直太方便了!OWL提供了完整的Docker支持,一键部署,省时省力!

 

# 克隆仓库
git clone https://github.com/camel-ai/owl.git
cd owl

# 配置环境变量
cp owl/.env_template owl/.env
# 编辑.env文件,填入您的API密钥

# 选项1:直接使用docker-compose
cd .container
docker-compose up -d
# 在容器中运行OWL
docker-compose exec owl bash -c "xvfb-python run.py"

# 选项2:使用提供的脚本构建和运行
cd .container
chmod +x build_docker.sh
./build_docker.sh
# 在容器中运行OWL
./run_in_docker.sh "您的问题"



更详细的Docker使用说明,请参考`DOCKER_README.md`文件。

六、3秒上手!运行示例,感受OWL的强大!🚀

安装配置完成后,运行以下示例,立刻体验OWL的强大功能:

 

python owl/run.py

我们还提供了一个最小化示例,只需配置LLM的API密钥即可运行:

python owl/run_mini.py

七、模型选择,随心所欲!OpenAI、Qwen、DeepSeek...统统支持!

OWL支持多种LLM模型,你可以根据自己的需求选择合适的模型。

模型要求:

*   工具调用能力:OWL需要具有强大工具调用能力的模型,才能与各种工具包交互。
*   多模态理解能力:对于涉及网页交互、图像分析或视频处理的任务,需要具备多模态能力的模型。

支持的模型:

*   OpenAI (GPT-4 或更高版本) (强烈推荐🏅)
*   Qwen
*   DeepSeek
*   ... (更多模型,请参考CAMEL模型文档)

如何运行不同的模型:

# 使用 Qwen 模型运行
python owl/run_qwen_zh.py

# 使用 Deepseek 模型运行
python owl/run_deepseek_zh.py

# 使用其他 OpenAI 兼容模型运行
python owl/run_openai_compatiable_model.py

# 使用 Ollama 运行
python owl/run_ollama.py

八、自定义任务,让OWL成为你的专属AI助手!🤖

你可以通过修改`run.py`脚本,让OWL帮你完成各种任务:

 

# Define your own task
question = "Task description here."

society = construct_society(question)
answer, chat_history, token_count = run_society(society)

print(f"\033[94mAnswer: {answer}\033[0m")

处理本地文件,只需提供文件路径和问题:

# 处理本地文件(例如,文件路径为 `tmp/example.docx`)
question = "给定的 DOCX 文件中有什么内容?文件路径如下:tmp/example.docx"

society = construct_society(question)
answer, chat_history, token_count = run_society(society)

print(f"答案:{answer}")



OWL会自动调用与文档相关的工具,帮你处理文件并提取答案。

试试这些示例任务:

*   "查询苹果公司的最新股票价格"
*   "分析关于气候变化的最新推文情绪"
*   "帮我调试这段 Python 代码:[在此粘贴你的代码]"
*   "总结这篇研究论文的主要观点:[论文URL]"
*   "如何做西红柿炒鸡蛋?"
*    "最近有什么好看的电影?影评如何?"

九、工具包配置,按需定制,打造你的专属AI工具箱!🧰

OWL支持多种工具包,你可以通过修改脚本中的`tools`列表,自定义你的AI工具箱:

 

# 配置工具包
tools = [
    *WebToolkit(headless=False).get_tools(),  # 浏览器自动化
    *VideoAnalysisToolkit(model=models["video"]).get_tools(),
    *AudioAnalysisToolkit().get_tools(),  # 需要OpenAI API密钥
    *CodeExecutionToolkit(sandbox="subprocess").get_tools(),
    *ImageAnalysisToolkit(model=models["image"]).get_tools(),
    SearchToolkit().search_duckduckgo,
    SearchToolkit().search_google,  # 如果不可用请注释
    SearchToolkit().search_wiki,
    *ExcelToolkit().get_tools(),
    *DocumentProcessingToolkit(model=models["document"]).get_tools(),
    *FileWriteToolkit(output_dir="./").get_tools(),
]

主要工具包:

*   多模态工具包 (需要模型具备多模态能力):WebToolkit、VideoAnalysisToolkit、ImageAnalysisToolkit
*   基于文本的工具包:AudioAnalysisToolkit、CodeExecutionToolkit、SearchToolkit、DocumentProcessingToolkit
*   其他专用工具包:ArxivToolkit、GitHubToolkit、GoogleMapsToolkit、MathToolkit、NetworkXToolkit、NotionToolkit、RedditToolkit、WeatherToolkit等

自定义配置方法:

# 1. 导入工具包
from camel.toolkits import WebToolkit, SearchToolkit, CodeExecutionToolkit

# 2. 配置工具列表
tools = [
    *WebToolkit(headless=True).get_tools(),
    SearchToolkit().search_wiki,
    *CodeExecutionToolkit(sandbox="subprocess").get_tools(),
]

# 3. 传递给助手代理
assistant_agent_kwargs = {"model": models["assistant"], "tools": tools}



选择必要的工具包,可以优化性能,减少资源使用。

十、网页界面,交互更便捷!🌐

OWL现在提供了网页界面,让你与系统的交互更方便!

 

python run_app.py


启动网页界面后,你可以:

*   便捷的模型选择:选择不同的模型(OpenAI、Qwen、DeepSeek等)
*   环境变量管理:直接从界面配置API密钥和其他设置
*   交互式聊天界面:通过用户友好的界面与OWL智能体交流
*   任务历史:查看交互的历史记录和结果

 

[图片生成失败]



网页界面使用Gradio构建,在你的本地机器上运行,除了你配置的模型API调用所需的数据外,不会向外部服务器发送任何数据,安全可靠!🔒

十一、实验复现,见证OWL的硬实力!🧪

我们提供了一个脚本,用于复现GAIA上的实验结果。

 

# 切换到 gaia58.18 分支:
git checkout gaia58.18
# 运行评估脚本:
python run_gaia_roleplaying.py

十二、未来计划,OWL的星辰大海!⏱️

*   撰写技术博客,分享我们在现实任务中多智能体协作方面的探索与见解。
*   引入更多针对特定领域任务的专业工具,进一步完善工具生态系统。
*   开发更复杂的智能体交互模式和通信协议。

总结:

OWL智能体,一款功能强大、开源免费的国产AI神器,不仅能帮你提高工作效率,还能拓展你的能力边界。无论你是学生、职场人士,还是技术爱好者,OWL都能成为你的得力助手!👍

还在等什么?赶快去体验吧!评论区互动:

*   你最期待OWL的哪个功能?🤔
*   你还希望OWL增加哪些工具?🛠️
*   分享你使用OWL的经验和心得!💬

福利时间:

*   评论区点赞👍+转发,抽3位幸运儿送OWL专属定制周边!🎁
*   关注我,获取更多AI干货和OWL最新动态!👀


 

### 关于Manus开源项目的介绍 Manus是一个专注于手部追踪和手势识别的开源项目,旨在为虚拟现实(VR)和增强现实(AR)应用提供精确的手势交互支持。通过集成先进的传感器技术和机器学习算法,Manus能够实现实时、低延迟的手部动作捕捉,并将其转换成可用于VR/AR环境中的互动指令。 #### 主要特点 - **高精度手部跟踪**:利用多模态数据融合技术,结合视觉传感与惯性测量单元(IMU),确保手部姿态估计的高度准确性。 - **跨平台兼容性**:支持多种主流操作系统及硬件设备,包括Windows, Linux, macOS以及各类VR头显装置。 - **易于集成APIs**:提供了简单易用的应用程序接口(API),方便开发者快速接入并应用于自己的产品之中。 - **开放社区贡献**:鼓励全球范围内的开发者参与进来共同完善和发展该框架,在GitHub上拥有活跃的讨论区和技术文档资源[^1]。 ```python import manus as ms # 初始化Manus SDK实例 sdk = ms.SDK() # 连接至指定的手套设备 device_id = sdk.connect_device('your_device_serial_number') if device_id is not None: print(f"成功连接到ID为 {device_id} 的设备.") else: print("未能找到匹配的设备.") # 获取当前帧的手指位置信息 finger_positions = sdk.get_finger_positions(device_id) for finger_name, position in finger_positions.items(): print(f"{finger_name}: ({position.x}, {position.y}, {position.z})") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值