机器学习中,不平衡样本多分类评估指标采用哪些?准确率很高,召回率在少数样本上较低。

Macro F1,这个指标计算每一类的F1 score然后求算术平均,如果模型在小样本上表现不好,小样本的F1会极大程度上拉低Macro F1。除了F1之外还有Macro recall,Macro precision,计算原理是一样的。

另,Micro F1在多样本分类中等价于accuracy,可以认为Micro偏向大样本类别,而Macro偏向小样本类别。



作者:Maple小七
链接:https://www.zhihu.com/question/385535335/answer/1183140869
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

样本不均衡问题通常解决办法有loss function做一些适应性的改变,比如样本少的类别权重加大;还有就是数据增强,对数量少的类别数据上采样,对数据量多的类别下采样。

评估指标和普通的分类问题一样,看项目更侧重于召回率还是精度,抑或是roc、auc、f1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值