Macro F1,这个指标计算每一类的F1 score然后求算术平均,如果模型在小样本上表现不好,小样本的F1会极大程度上拉低Macro F1。除了F1之外还有Macro recall,Macro precision,计算原理是一样的。
另,Micro F1在多样本分类中等价于accuracy,可以认为Micro偏向大样本类别,而Macro偏向小样本类别。
作者:Maple小七
链接:https://www.zhihu.com/question/385535335/answer/1183140869
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
样本不均衡问题通常解决办法有loss function做一些适应性的改变,比如样本少的类别权重加大;还有就是数据增强,对数量少的类别数据上采样,对数据量多的类别下采样。
评估指标和普通的分类问题一样,看项目更侧重于召回率还是精度,抑或是roc、auc、f1