hdu 5685 Problem A(逆元)

Problem A

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1609    Accepted Submission(s): 729


Problem Description
度熊手上有一本字典存储了大量的单词,有一次,他把所有单词组成了一个很长很长的字符串。现在麻烦来了,他忘记了原来的字符串都是什么,神奇的是他竟然记得原来那些字符串的哈希值。一个字符串的哈希值,由以下公式计算得到:

H(s)=ilen(s)i=1(Si28) (mod 9973)

Si 代表 S[i] 字符的 ASCII 码。

请帮助度熊计算大字符串中任意一段的哈希值是多少。
 

Input
多组测试数据,每组测试数据第一行是一个正整数 N ,代表询问的次数,第二行一个字符串,代表题目中的大字符串,接下来 N 行,每行包含两个正整数 a b ,代表询问的起始位置以及终止位置。

1N1,000

1len(string)100,000

1a,blen(string)
 

Output
对于每一个询问,输出一个整数值,代表大字符串从  a  位到  b  位的子串的哈希值。

问题分析:
既然要求一段的hash值并取膜
(hashrR / hashL)%MOD
除法取膜无法满足分配律
所以借用逆元
(x  *  hashL ) %Mod == 1
由费马小定理可知

x的其中一个解为 = hashL^(Mod - 2)%Mod

数论基础(补充拓展欧几里得求逆元)

AC 代码:



#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define Mod 9973
#define LL long long
char str[100005];
int x[100005];
int y[100005];
int Quick(int n,int m){
    int res = 1;
    while(m){
        if(m&1)res=(res*n)%Mod;
        n=(n*n)%Mod;
        m>>=1;
    }
    return res%Mod;
}
int main()
{
    int n;
    while(scanf("%d",&n)==1){
        scanf("%s",str);
        int len=strlen(str);
        x[0]=1;
        y[0]=1;
        for(int i=1;i<=len;i++){
            x[i]=x[i-1]*(str[i-1]-28);
            x[i]%=Mod;
            //printf("--%d %d\n",x[i],y[i]);
        }
        while(n--){
            int left,right;
            scanf("%d%d",&left,&right);
            printf("%d\n",(x[right]*Quick(x[left-1],Mod-2)%Mod));
        }
    }
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值