Problem A
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 1609 Accepted Submission(s): 729
Problem Description
度熊手上有一本字典存储了大量的单词,有一次,他把所有单词组成了一个很长很长的字符串。现在麻烦来了,他忘记了原来的字符串都是什么,神奇的是他竟然记得原来那些字符串的哈希值。一个字符串的哈希值,由以下公式计算得到:
H(s)=∏i≤len(s)i=1(Si−28) (mod 9973)
Si 代表 S[i] 字符的 ASCII 码。
请帮助度熊计算大字符串中任意一段的哈希值是多少。
H(s)=∏i≤len(s)i=1(Si−28) (mod 9973)
Si 代表 S[i] 字符的 ASCII 码。
请帮助度熊计算大字符串中任意一段的哈希值是多少。
Input
多组测试数据,每组测试数据第一行是一个正整数
N
,代表询问的次数,第二行一个字符串,代表题目中的大字符串,接下来
N
行,每行包含两个正整数
a
和
b
,代表询问的起始位置以及终止位置。
1≤N≤1,000
1≤len(string)≤100,000
1≤a,b≤len(string)
1≤N≤1,000
1≤len(string)≤100,000
1≤a,b≤len(string)
Output
对于每一个询问,输出一个整数值,代表大字符串从
a
位到
b
位的子串的哈希值。
问题分析:
既然要求一段的hash值并取膜
(hashrR / hashL)%MOD
除法取膜无法满足分配律
所以借用逆元
(x * hashL ) %Mod == 1
由费马小定理可知
x的其中一个解为 = hashL^(Mod - 2)%Mod
数论基础(补充拓展欧几里得求逆元)
AC 代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define Mod 9973
#define LL long long
char str[100005];
int x[100005];
int y[100005];
int Quick(int n,int m){
int res = 1;
while(m){
if(m&1)res=(res*n)%Mod;
n=(n*n)%Mod;
m>>=1;
}
return res%Mod;
}
int main()
{
int n;
while(scanf("%d",&n)==1){
scanf("%s",str);
int len=strlen(str);
x[0]=1;
y[0]=1;
for(int i=1;i<=len;i++){
x[i]=x[i-1]*(str[i-1]-28);
x[i]%=Mod;
//printf("--%d %d\n",x[i],y[i]);
}
while(n--){
int left,right;
scanf("%d%d",&left,&right);
printf("%d\n",(x[right]*Quick(x[left-1],Mod-2)%Mod));
}
}
}