GNN for Science上的应用

本文介绍了图神经网络(GNN)在科学领域的应用,包括物理学、生物学和医学中的研究,以及最新进展——欧式等变图神经网络。GNN能够处理科学数据中的图结构,通过模型如MPNN进行表示和分析。物理对称性诱导的GNN等变性在处理几何约束和保持物理规律方面表现出优势,为科学研究提供了新视角。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

简介

01/Science、GNN 背景介绍

1. AI for Science:一个新的转折点

2. 广泛存在于科学领域的“图”(Graph)

3. 图神经网络(GNN)是处理图数据的有效工具之一

4. 当前使用最广泛的 GNN 模型——MPNN

02/GNN for Science 相关研究

1. GNN for Physics

2. GNN for Biology and Medicine

3. 表示任务

4. 交互过程

5. 分子生成任务

03/最新进展——欧式等变图神经网络

2. 物理对称性诱导 GNN 的等变性(Equivariance)

3. 几何约束

4. 其他工作

04/总结

参考


简介

导读:如今机器学习模型的可解释性已经引起人们的广泛关注,而图机器学习作为机器学习领域的重要组成部分,其可解释性更值得人们的深入研究。GNN for Science 将科学知识融入机器学习领域,从另一方面体现了机器学习的可解释性,也可以对人们如何提高模型可解释性有所启发。

今天为大家带来的是黄文炳老师讲解的 GNN for Science 报告,主要内容包括:

  • Science、GNN 背景介绍
  • GNN for Science 相关研究
  • 最新进展——欧式等变图神经网络
  • 总结

分享嘉宾|黄文炳 中国人民大学高瓴人工智能学院 助理教授

编辑整理|于文昊 北京航空航天大学

出品社区|DataFun

分享嘉宾

黄文炳

中国人民大学高瓴人工智能学院 助理教授

黄文炳,现为中国人民大学高瓴人工智能学院助理教授。2017年取得清华大学计算机科学与技术博士学位,2012年取得北京航空航天大学数学与应用数学学士学位。主要研究兴趣为图神经网络与图模型理论方法及其在物理系统的表示与决策、智能化学药物发现等任务上的应用。在人工智能领域顶级会议或期刊(NeurIPS、ICLR、TPAMI等)发表论文30余篇,谷歌学术引用3000余次。代表性工作包括快速图学习算法AS-GCN、深度图网络训练方法DropEdge、多体物理动力学仿真模型GMN、大规模分子图预训练网络GROVER等。


 

01/Science、GNN 背景介绍

1. AI for Science:一个新的转折点

最近几年来,人工智能领域的前沿研究主要着眼于基于大规模无标注数据的模型预训练,从 2020 年以来,GPT3、ViT、Switch Transformer 等语言、视觉模型的提出,成为当前研究的主流趋势。

而 DeepMind 在 2021 年提出的 AlphaFold2 模型,也使机器学习方法在生物领域成功落地,并成为使机器学习从处理经典 AI 任务的数据(如图像和自然语言)到处理科学数据(如生物、物理领域的数据)的一个新的转折点

DeepMind 将 AI 应用于科学领域的思想,有望成为从人工智能转变为人工专家智能的新转折点。在 2021 年末到 2022 年初,DeepMind 接连发表多篇 AI for Science 领域文章,将 AI 技术应用于传统自然科学如数学、物理、物理化学等领域,实现利用深度学习算法进行数学推理、控制核聚变、提升 DFT 的预测性能等重要突破。

2. 广泛存在于科学领域的“图”(Graph)

生活中我们所说的粒子一般是指分子,分子由原子组成,而原子之间又由化学键形成连边。分子本质上是一个“图”(graph);具体在医药领域,我们生命服用的小分子药物和病毒蛋白质(属于大分子)的结合也和图上的连接的概念相似;除此之外,在天体运动过程中,我们同样可以将其看作是一个全连接图(基于它们的相互作用来建边)。

将科学领域的数据建模成图数据之后,我们便可以使用处理图结构的方法(如 GNN)对这些模型进行进一步表示和分析。

3. 图神经网络(GNN)是处理图数据的有效工具之一

关于 GNN,和我们的直接认知所不同的一点是:最早的图神经网络并不是由机器学习领域的学者提出,而是早在 1997 年由意大利学者 A. Sperduti, et al 在 Supervised neural networks for the classification of structures 文章中作为处理图结构数据的方法提出。

在那之后,最近几年(2014~2021)中,图神经网络也受到越来越多的关注。在 2022年 ICLR 的 Submission Keywords 中,“graph neural network”也排到了第三名。而发布在各个顶会上的关于 GNN 的论文量也随着年份呈指数性增长。

接下来我们来简单回顾 GNN 的发展历程

2005 年,几位意大利学者 Scarselli et al. 最先提出 GNN 这个词,为 GNN 的发展起到了奠基的作用。

随后在 2014 年,LeCun 团队最先在 ICLR 引入了图卷积的概念,并且提出空间卷积和谱图卷积两种卷积网络。

从宏观上来看,我们可以从两个方面来理解图神经网络 GNN。

  • 将 GNN 看作是一种 RNN(递归神经网络)

智能通风换气系统是一种能够自动调节室内空气质量,以达到适宜居住环境的系统。本文介绍的基于STM32微控制器的智能通风换气系统,其设计理念是通过集成各种传感器,实时监测房间内的环境指标,并结合控制系统实现自动或手动控制通风换气,以保障室内空气质量。 系统的主要组成部分包括: 1. STM32F407ZGT6单片机:该单片机是系统的核心控制单元,负责处理来自各个传感器的数据,执行用户设置的指令,以及控制执行机构的动作。 2. 传感器模块:系统中使用了以下传感器来收集环境数据: - DHT11温湿度传感器:用于测量房间内的温度和湿度。 - MQ-135空气质量传感器:主要检测空气质量指数,包括有害气体浓度。 - MQ-2可燃气体检测传感器:用于检测房间内的易燃气体浓度,如瓦斯、天然气泄漏。 3. TFT_LCD液晶显示系统:将收集到的环境数据和系统状态实时显示给用户观看,使用户可以直观地了解当前室内空气状况。 4. 继电器:用于控制房间内通风换气设备的开关,以执行必要的通风或排风操作。 5. 执行机构:指通风设备、加湿装置等,它们通过继电器接收到来自单片机的指令后进行工作。 6. 按键开关:用户可以通过按键开关来手动控制执行机构的启停,实现手动控制通风换气的功能。 系统的工作流程为: 当传感器模块检测到温度、湿度或空气质量指数超标时,相应的数据会被发送到STM32单片机。单片机分析这些数据后,如果环境质量不达标,会立即通过继电器控制开启通风换气设备进行排风或调节室内空气。同时,这些数据也会通过TFT_LCD液晶显示系统显示出来。当环境质量达标后,系统发送停止信号,执行机构停止工作。 系统的优点是能够自动监测和调节室内空气质量,减少人工干预,提高居住舒适度。系统还可以通过按键手动控制通风换气,增加了使用的灵活性。 本设计针对的主要是民用建筑的智能通风换气系统,其控制功能结构框图如图1所示。在实际应用中,该系统能够有效地提高居住环境的空气质量,为人们提供一个健康、绿色的居住环境。 从硬件设计的角度看,单片机最小系统的设计至关重要,它主要包括电源电路、振荡电路以及复位电路部分。电源电路为单片机以及传感器模块提供稳定的工作电压,确保系统正常运转。振荡电路为单片机提供时钟信号,使其能够按照预定的频率运行。复位电路则确保单片机在上电或者出现异常时能够复位到初始状态,保证系统能够重新启动和运行。 在设计时,还需要考虑系统的稳定性和可靠性,确保在各种环境条件下都能稳定运行。比如,电源电路要设计有适当的滤波和稳压措施,以抵御电网波动对系统的影响。同时,单片机程序中应包含错误处理和异常检测机制,以便在传感器失效或数据异常时能够及时采取措施。 系统的用户界面设计应简洁易懂,方便用户进行手动控制和查看状态信息。液晶显示屏应选择清晰度高、反应快的产品,以提供良好的用户体验。 以上就是对“基于STM32的智能通风换气系统设计”的详细解读,通过上述知识点,我们可以了解到系统设计的背景、目的、主要构成部件、工作流程以及硬件设计的关键点,并对如何提高系统的稳定性和用户界面友好性有了初步的认识。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值