【GNN】Representing Long-Range Context for Graph Neural Networks with Global Attention

GraphTransformer(GraphTrans)是一种新提出的图神经网络架构,它通过结合GNN和Transformer模块,有效地学习图数据中的长程依赖关系。实验显示GraphTrans在多个图分类任务上超越了现有方法,表明无结构先验的学习方法可能更适合处理图的全局信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

基本信息

摘要

方法

模型架构

Transformer模块

CLS标记作为图表示

实验结果

结论

参考


 

图片

基本信息

作者:Zhanghao Wu, Paras Jain, Matthew A. Wright, Azalia Mirhoseini, Joseph E. Gonzalez, Ion Stoica

机构:UC Berkeley, Google Brain

摘要

本文提出了一种新的图神经网络架构Graph Transformer (GraphTrans),以学习图中的长程依赖关系。通过在标准GNN模块之后添加一个Transformer子模块,GraphTrans可以显式地计算图中所有节点对之间的关系,从而学习全局信息。实验结果表明,GraphTrans在多个图分类任务上都取得了state-of-the-art的结果,显著优于那些试图通过分层聚类学习长程依赖的方法。

Code for GraphTrans is available at https://github.com/ucbrise/graphtrans

方法

图神经网络(GNNs)是一种强大的结构数据表示学习方法。但是当前的GNN方法在学习长程依赖上存在困难。简单增加GNN的深度和宽度无法扩大感受野,因为更大的GNN会遇到梯度消失和过度平滑等问题。基于pooling的方法如分层聚类虽然在理论上可以学习更广范围的信息,但其效果还不如在计算机视觉任务中那样普适。

最近的一些研究表明,在计算机视觉任务中,注意力机制可以取代卷积操作,学习相似的局部关系。在更高级的任务中,去掉结构先验的模块反而获得了更好的效果,提示结构先验对于建模长程依赖可能是无用或者有害的。

启发于这一发现,本文提出了Graph Transformer (GraphTrans),使用GNN子模块学习局部的短程关系,使用Transformer子模块学习长程的全局关系。删掉位置编码使得Transformer对图的节点顺序不敏感,因此适合用于建模图结构。

本文的实验结果表明,相比那些试图编码结构先验的Baseline,简单的GraphTrans架构取得了多个图分类任务上的最优结果这表明与GNN不同,对图的长程依赖建模,使用纯基于学习的方法而不强制编码图结构信息可能是更合适的。

模型架构

GraphTrans由两个主要模块组成:

图片

  • GNN子模块:用于学习节点的局部邻域信息

  • Transformer子模块:用于学习全局的长程依赖关系

GNN子模块可以是任意现有的图卷积网络,用来学习每个节点的局部表征。

Transformer子模块在GNN模块之后,对GNN模块输出的节点表征进行全局的自注意力计算,学习节点之间的全局关系。这里的Transformer使用的是无位置编码的结构,以保证对图节点的permutation invariance。

最后,通过一个特殊的CLS标记,将Transformer模块学习到的全局信息聚合为整个图的表征,进行图分类。

Transformer模块

  •  

  • 计算自注意力ighed attentions:

    •  

  • 多头注意力机制

  • Feed Forward子层:Dropout → Layer Norm → 全连接 → non-linearity → Dropout → 全连接 → Dropout → Layer Norm

  • 残差连接

CLS标记作为图表示

  • 在节点特征序列后面追加一个可学习的CLSembedding $h_{}$

  • Transformer输出对应的$h_{}^{L_{TF}}$作为整个图的表征

  • 通过线性层和softmax生成预测

实验结果

  • 在OpenGraphBenchmark的多个数据集上,GraphTrans都取得了SOTA的结果,明显优于那些通过分层聚类学习长程依赖的Baseline

  • 在NCI生物分子数据集上也取得明显提升

  • 即使不使用位置编码也能有效学习长程依赖

  • CLS标记优于mean/max-pooling等其它图表示方法

图片

图2展示了一个来自OGB Code2数据集的示例图,以及经过GraphTrans模型后的注意力图(attention map)。

横轴对应目标节点,纵轴对应源节点,所以每一行的注意力权重和为1。

可以观察到:

- 节点17向节点8赋予了较高的注意力权重,尽管这两个节点在图中相距5个跳数

- 第18列对应CLS标记的embedding,可以看到多个节点向其赋予较高的注意力权重,说明这些节点正在向CLS标记传递全局信息

这表明Transformer模块内的全局自注意力可以捕获图中长程的依赖关系,哪怕两个节点在图中路径长度很长也可以建立起联系。而CLS标记也的确学会了从各个节点汇聚信息,获得整个图的表达。这与Transformer在NLP任务中的表现非常相似,每个token向CLS标记传递全局语义信息。所以这张注意力图从视觉上佐证了文章所述,Transformer可以高效地学习图上的长程依赖。

图片

结论

  • 本文提出了GraphTrans,一种简单有效的GNN架构,通过添加Transformer模块来学习长程依赖

  • Transformer的全局自注意力机制可以显式地学习节点之间的全局关系

  • CLS标记为图学习提供了一种有效的表示方法

  • GraphTrans在多个图分类任务上都取得了state-of-the-art的结果

  • 结果表明,与GNN不同,Transformer可以适用于学习图上的长程依赖

  • GraphTrans提供了一种简单通用的方式来提升GNN在图分类任务上的精度

参考

NeurIPS 2021 || 图Transformer学习长距离上下文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值