目标检测数据集划分篇

数据集划分单纯数据集划分不进行标签转换

8;1;1划分train val test

并保存到train.txt/ val.txt /test.txt


数据集划分

在 VOCdevkit 目录下创建split.py,运行之后会在 Main 文件夹下生成三个个txt文件:

 train.txt、val.txt、test.txt

# -*- coding: utf-8 -*-
"""
Author:smile
Date:2022/09/11 10:00
顺序:脚本A1
简介:分训练集、验证集和测试集,按照 8:1:1 的比例来分,训练集8,验证集1,测试集1

"""
import os
import random
import argparse

parser = argparse.ArgumentParser()
# xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default=r'F:\dataset\underwater\URPC\new\urpc2020\labels', type=str, help='input xml label path')
# 数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default=r'F:\dataset\underwater\URPC\new\urpc2020\Imagesets\Main', type=str, help='output txt label path')
opt = parser.parse_args()

train_percent = 0.8  # 训练集所占比例
val_percent = 0.1  # 验证集所占比例
test_persent = 0.1  # 测试集所占比例

xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)

if not os.path.exists(txtsavepath):
    os.makedirs(txtsavepath)

num = len(total_xml)
list = list(range(num))

t_train = int(num * train_percent)
t_val = int(num * val_percent)

train = random.sample(list, t_train)
num1 = len(train)
for i in range(num1):
    list.remove(train[i])

val_test = [i for i in list if not i in train]
val = random.sample(val_test, t_val)
num2 = len(val)
for i in range(num2):
    list.remove(val[i])

file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')

for i in train:
    name = total_xml[i][:-4] + '\n'
    file_train.write(name)

for i in val:
    name = total_xml[i][:-4] + '\n'
    file_val.write(name)

for i in list:
    name = total_xml[i][:-4] + '\n'
    file_test.write(name)

file_train.close()
file_val.close()
file_test.close()

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值