Image Processing-Base
文章平均质量分 83
ML_NI_CSU
这个作者很懒,什么都没留下…
展开
-
图像运算(二)——减法(Subtraction)
描述:图像的减法即两幅输入图像同意位置像素相减,得到一个输出图像的过程。公式描述:O(i,j) = I1(i,j) - I2(i,j) OR O(i,j) = |I1(i,j) - I2(i,j)|注意1:常值问题,输入图像也可以有一个是常量,即 O(i,j) = I(i,j) - C OR O(i,j) =| I(i,,j) - C|注意2:下限问题,如果两幅图像相减得原创 2012-02-24 13:11:15 · 11424 阅读 · 0 评论 -
图像运算(八)——逻辑异或(XOR)
描述:As XORinput1 input2output0 0 00 1 11 0 11 1 0As XNORinput1 input2output原创 2012-02-24 19:31:28 · 6234 阅读 · 0 评论 -
图像运算(九)——逻辑反(NOT)
描述:逻辑反操作即反向操作,正如二进制图像中,黑变成白,白变成黑input output0 11 0公式描述:O(i,j) = (2^n -1) - I(i,j) ,n表示该图像是n-bitsCode: /** *apply_invert applies an inver原创 2012-02-27 11:13:55 · 1560 阅读 · 0 评论 -
图像处理滤波器(三)——高斯平滑滤波器(Gaussian Smoothing Filter)
描述:高斯平滑滤波器被使用去模糊图像,和均值滤波器差不多,但是和均值滤波器不一样的地方就是核不同。均值滤波器的核每一个值都是相等,而高斯平滑滤波器的核内的数却是呈现高斯分布的。对于二维高斯分布:它的分布图如下:作为高斯平滑滤波器的核就应该呈现出上图的布局,例如:上图分布凸显出了高斯该有的特点,因此,一般而言,高斯平滑滤波器要优于均值滤波器。原创 2012-02-27 18:21:07 · 20175 阅读 · 0 评论 -
图像处理滤波器(五)——斑点滤波器(Speckle Removal Filter)
描述:斑点滤波器是本人自己翻译的,不是通俗叫法,您记住它叫Speckle Removal Filter 就可以了,它来自于Thomas R.Crimmins 的一篇文章“Geometric Filter for Speckle Reduction”中的"The 8-Hull Algorithm",这个算法主要应用于合成孔径雷达图像(synthetic aperture radar image)去减原创 2012-02-28 11:35:16 · 5942 阅读 · 0 评论 -
脑成像数据的格式转换
目前,脑成像数据主要有DTI、fmri、3D三种模态。这些数据在分析前都要进行格式转换,不同公司的扫描仪存储格式也不尽相同。脑成像处理软件也很多,不同软件使用的格式也不一样,所以数据转换是脑成像数据处理的第一步,必须非常清楚。这里主要以siemens的机器为准,介绍在windowx 下的MRIcron的dcm2nii转换和MRIConvert转换.从扫描中心下载的原始数据是以dicom转载 2013-12-04 10:15:09 · 7500 阅读 · 1 评论 -
色彩深度(colordepth)
Color depth or colour depth (see spelling differences), also known asbit depth, is either the number of bits used to indicate the color of a single pixel, in a bitmapped image or video frame buffer,原创 2014-01-02 21:49:23 · 5596 阅读 · 0 评论 -
数字图像处理中的基本图像类型
在计算机中,按照颜色和灰度的多少可以将图像争为二值图像、灰度图像、索引图像和真彩色RGB图像四种基本类型。目前,大多数图像处理软件都支持这四种类型的图像。(1) 二值图像:一幅二值图像的二维矩阵仅由0、1两个值构成,“0”代表黑色,“1”代白色。由于每一像素(矩阵中每一元素)取值仅有0、1两种可能,所以计算机中二值图像的数据类型通常为1个二进制位。二值图像通常用于文字、线条原创 2013-12-27 11:13:52 · 1622 阅读 · 0 评论 -
图像运算(七)——逻辑或(OR)
描述:As ORinput1 input2output0 0 00 1 11 0 11 1 1As NORinput1 input2output原创 2012-02-24 19:02:54 · 2156 阅读 · 0 评论 -
图像处理滤波器(六)——频率滤波器(Frequency Filter)
描述:频率滤波器是一种常见的滤波器,它是基于Fourier 变换演变过来的,它主要分为高通滤波器和低通滤波器。所谓高通滤波器就是只通过高频,滤除低频。反之低通滤波器就是滤除高频,保留低频。现举例一个常见的频率滤波器——FFT FilterCode: /** * Constructor to set up an FFT object and then a原创 2012-02-28 12:17:16 · 5232 阅读 · 0 评论 -
图像运算(五)——混合(blending)
描述:两幅图像各占一定比例的进行混合成一个图像,但是两个占的百分比等于1,公式描述:O(i,j) = P * I1(i,j) + (1-P) * I2(i,j), 其中P就是混合比(blending ratio)Code: /** *Applies the image Blend operator on the specified image arrays,原创 2012-02-24 18:07:48 · 3021 阅读 · 0 评论 -
图像处理滤波器(四)——最值滤波器(Conservative Smoothing Filter)
描述:之所以我把它翻译成最值滤波器,因为它的原理就是在卷积核区域内,中心点的值如果大于或小于附近值的最大值或最小值时,将大于最大值的赋值为最大值,将小于最小值的赋值为最小值,这就是Conservative Smoothing Filter如下图所示:这上面的图表明中间点150要换成127,简单点讲就是大于最大值的等于最大值,小于最小值的等于最小值,在最小值和原创 2012-02-27 19:10:27 · 5180 阅读 · 0 评论 -
图像运算(一)——加法(Addition)
描述:图像加法顾名思义就是两个输入图像同一位置上的像素相加,得到一个输出图像的过程。公式描述:O(i,j) = I1(i,j) + I2(i,j); 其中O(i,j)就是Output Image,I1和I2就是Input Image。注意1:常值问题,输入图像之一可以有一个是一个Constant,即O(i,j) = I(i,j) + C;注意2:饱和度问题,对于8-bits的图像而言,原创 2012-02-24 12:46:09 · 4361 阅读 · 0 评论 -
图像运算(三)——乘法(Multiplication)
描述:和其它图像操作一样,图像的乘法操作也是点对点的像素点进行操作公式描述:O(i,j) = I1(i,j) * I2(i,j)注意1:和其它操作一样输入图像之一也可以是一个常值(C),即 O(i,j) = I(i,j) * C注意2:上下限问题和循环问题,对于支持循环的图像格式来说,就不存在超过上下限问题,输出的图像像素值不管是多大,它总在上下限的范围之内进行循环。Cod原创 2012-02-24 16:34:58 · 6806 阅读 · 1 评论 -
图像运算(四)——除法(Division)
跟前面3个一样,除法公式:O(i,j) = I1(i,j) * I2(i,j)OR O(i,j) = I(i,j) / C (C is a constant) Code : /** *Applies the image Div operator on the specified image arrays, with the *specified offset原创 2012-02-24 17:24:02 · 6351 阅读 · 0 评论 -
图像运算(六)——逻辑与(AND)
描述:只要学过计算机的人都知道什么是逻辑与操作,如As AND Operationinput1 input2 output0 0 00 1 01 0 01 1 1As NAND Operat原创 2012-02-24 18:30:18 · 1371 阅读 · 0 评论 -
图像运算(十)——位移(Bitshift)
描述:位移可以总结为四个字——左乘右除公式描述:shifting k-bits to the right: O(i,j) = I(i,j) / (2^k)shifting k-bits to the left: O(i,j) = I(i,j) * (2^k)图形描述:Binary Decimal00110010原创 2012-02-27 11:44:54 · 3266 阅读 · 0 评论 -
图像处理滤波器(一)——均值滤波器(Mean Filter)
描述:均值滤波器是图像处理中一种常见的滤波器,它主要应用于平滑噪声。它的原理主要是利用某像素点周边像素的平均值来打到平滑噪声的效果。常用的均值核如下图所示: 图像滤波器操作实际上就是模板操作,对于模板操作我们应该注意边界问题:什么是边界问题?对于边界问题就是当图像处理边界像素的时候,卷积核与图像使用区域不能匹配,计算出现问题。处原创 2012-02-27 13:28:13 · 39015 阅读 · 0 评论 -
图像处理滤波器(二)——中值滤波器(Median Filter)
描述:中值滤波器也是为了减少噪声,跟均值滤波器差不多,但是它比均值滤波器保留更多的细节。什么是中值滤波器?中值滤波器也是模板滤波器,不过此处的模板只是一个模板,里面没有数字而已。就想入下图所示:此处展示的是一个3*3的模板,由图上可以看出中值滤波器就是取模板覆盖区域的排序之后的中间值作为该模板区域内中心的像素值。Code: /*原创 2012-02-27 16:50:24 · 19372 阅读 · 1 评论 -
图像处理中不适定问题
图像处理中不适定问题(ill posed problem)或称为反问题(inverse Problem)的研究从20世纪末成为国际上的热点问题,成为现代数学家、计算机视觉和图像处理学者广为关注的研究领域。数学和物理上的反问题的研究由来已久,法国数学家阿达马早在19世纪就提出了不适定问题的概念:称一个数学物理定解问题的解存在、唯一并且稳定的则称该问题是适定的(Well Posed).如果不满足适定性转载 2014-10-22 17:42:59 · 6998 阅读 · 0 评论