Predict treatment response to chemoradiotherapy in esophageal carcinoma

目录:

1:INTRODUCTION

2:MATERIALS

3:METHODS

4:RESULTS

5:CONCLUSIONS

1:   INTRODUCTION

        食管癌是最常见的第八大恶性肿瘤类型,包括超过每年有450000人被诊断为癌症,这也是癌症相关死亡的第六大原因,每年约有400000人死亡。目前,同步放化疗已成为的标准治疗方法。然而,局部晚期食管癌经过放化疗术后5年总生存率只有36-47%。因此,一种非侵入性预测方法有望识别出放化疗之后反应差的高危人群。早期选择CRT反应较差的患者可从抢救性手术中获益,获得长期生存。因此,在治疗前对这些患者进行识别,预测患者对放化疗的反应很有必要。也就是说,我们就是想在没进⾏化疗之前知道哪些病⼈适合辅助化疗,哪些病⼈不适合辅助化疗,这样可以对病人情况做相应的治疗方案。(二分类的问题---适合或者不适合

         除了肉眼可见的宏观影像学特征,影像图像被认为存在大量可被挖掘的、高维的定量特征。这些特征能一定程度上反映肿瘤分子水平的信息以及内部的微环境,从而用来辅助病灶定性、疗效预测、疗效评估等,研究者称之为影像组学 。通过充分利用影像中所包含的信息,利用算法寻找与结果之间的关联关系,进而对肿瘤进行评估。影像组学的发展能够解决肿瘤异质性难以确定的问题,对于肿瘤患者来说,尽早对肿瘤作出正确评估意义非常重大。

     

2:    MATERI

在R语言中,模型用于预测响应变量的标签和概率。标签是指模型根据输入特征预测出响应变量的类别或类别级别。概率是指对于每个可能的类别,模型预测其属于该类别的概率。 R语言中,使用predict函数来输出标签和概率。根据模型类型的不同,有不同的函数可以使用。以下是一些常见模型类型及其相应的标签和概率输出函数: 1. 逻辑回归模型:predict函数可以用来输出标签以及对应的概率。具体可以使用type参数来指定输出类型,例如使用type="response"表示输出概率,type="class"表示输出标签。 2. 决策树模型:可以使用predict函数来输出标签。具体可以使用type参数来指定输出类型,例如使用type="class"表示输出标签。 3. 随机森林模型:可以使用predict函数来输出标签和概率。具体可以使用type参数来指定输出类型,例如使用type="class"表示输出标签,type="prob"表示输出概率。 4. 支持向量机模型:可以使用predict函数来输出标签和概率。具体可以使用decision.values参数来控制是否输出概率。decision.values=TRUE表示输出概率,decision.values=FALSE表示输出标签。 5. 神经网络模型:可以使用predict函数来输出标签和概率。具体可以使用type参数来指定输出类型,例如使用type="class"表示输出标签,type="prob"表示输出概率。 总之,在R语言中,根据模型类型和参数设置,使用predict函数可以方便地输出模型的标签和概率。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值