目录:
1: INTRODUCTION
食管癌是最常见的第八大恶性肿瘤类型,包括超过每年有450000人被诊断为癌症,这也是癌症相关死亡的第六大原因,每年约有400000人死亡。目前,同步放化疗已成为的标准治疗方法。然而,局部晚期食管癌经过放化疗术后5年总生存率只有36-47%。因此,一种非侵入性预测方法有望识别出放化疗之后反应差的高危人群。早期选择CRT反应较差的患者可从抢救性手术中获益,获得长期生存。因此,在治疗前对这些患者进行识别,预测患者对放化疗的反应很有必要。也就是说,我们就是想在没进⾏化疗之前知道哪些病⼈适合辅助化疗,哪些病⼈不适合辅助化疗,这样可以对病人情况做相应的治疗方案。(二分类的问题---适合或者不适合
除了肉眼可见的宏观影像学特征,影像图像被认为存在大量可被挖掘的、高维的定量特征。这些特征能一定程度上反映肿瘤分子水平的信息以及内部的微环境,从而用来辅助病灶定性、疗效预测、疗效评估等,研究者称之为影像组学 。通过充分利用影像中所包含的信息,利用算法寻找与结果之间的关联关系,进而对肿瘤进行评估。影像组学的发展能够解决肿瘤异质性难以确定的问题,对于肿瘤患者来说,尽早对肿瘤作出正确评估意义非常重大。