1.有限元。参看前面的博客。其基本思想是以系统能量最小化来求解系统的稳定点(一般文章会说成泛函和虚位移或虚功),以此方法就可以使用最优化的方法求解出能量平衡点,数值上最终变成求解线性方程组。Ax=b,方程组的矩阵A为刚度矩阵,变量b是外力,x是位移。刚度矩阵的A的意义就是描述在位移x下的作用力。由于多个系统的链接属性,导致每个位移会与相广联的质点有关,因此描述为一个矩阵。而传统有限元的刚度矩阵一般仅与链接的构建有关。
2.近场动力学。属于无网格法,使用积分的思想来描述质点之间的作用力,有点类似SPH(有文章比较SPH和近场动力学)。可以描述构建裂纹在应力下的扩展等难题(其他方法不容易解决),是近年来计算力学的方向。此方法在对模型离散后变成一个多质点相互作用的线性方程组,最终也是求解。只不过这个矩阵在求解过程中,元素会因为质点位置发生变动也会有变化。近场动力学的刚度矩阵与有限元不同,会与当前质点有关,还会与质点附件的质点有关,因此称为近场的作用域。
3.代码。Coding…
近场动力学通俗讲解
最新推荐文章于 2025-04-30 17:57:06 发布