bzoj 2301: [HAOI2011]Problem b (莫比乌斯反演)

题目链接:哆啦A梦传送门

题意:求 ∑ x = a b ∑ y = c d [ g c d ( x , y ) = k ] \begin{aligned} \sum_{x=a}^{b} \sum_{y=c}^{d} [gcd(x,y)=k] \end{aligned} x=aby=cd[gcd(x,y)=k]

看到这题显然上式等价于 :
∑ x = a b / k ∑ y = c d / k [ g c d ( x , y ) = 1 ] \begin{aligned} \sum_{x=a}^{b/k} \sum_{y=c}^{d/k} [gcd(x,y)=1] \end{aligned} x=ab/ky=cd/k[gcd(x,y)=1]

这个我们在 bzoj 2190 做过求
∑ x = 1 n ∑ y = 1 n [ g c d ( x , y ) = 1 ] \begin{aligned} \sum_{x=1}^{n} \sum_{y=1}^{n} [gcd(x,y)=1] \end{aligned} x=1ny=1n[gcd(x,y)=1],这里也类似。

我们容斥下就可以了 :
我们设 f ( n , m ) = ∑ x = 1 n ∑ y = 1 m [ g c d ( x , y ) = 1 ] f(n,m)=\begin{aligned} \sum_{x=1}^{n} \sum_{y=1}^{m} [gcd(x,y)=1] \end{aligned} f(n,m)=x=1ny=1m[gcd(x,y)=1]

那么此题最终结果就为 :
s u m = f ( b , d ) − f ( c − 1 , b ) − f ( a − 1 , d ) + f ( a − 1 , c − 1 ) sum=f(b,d)-f(c-1,b)-f(a-1,d)+f(a-1,c-1) sum=f(b,d)f(c1,b)f(a1,d)+f(a1,c1)

代码:

#include<bits/stdc++.h>

using namespace std;

typedef long long LL;

const int N=5e4+10;

int prime[N],tot,mu[N];
LL sum[N];

bool vis[N];

void init()
{
    mu[1]=sum[1]=1;

    for(int i=2;i<N;i++)
    {
        if(!vis[i]){
            prime[++tot]=i;
            mu[i]=-1;
        }
        for(int j=1;j<=tot&&i*prime[j]<N;j++){
            int x=i*prime[j];

            vis[x]=1;
            if(i%prime[j]==0){
                mu[x]=0;
                break;
            }
            mu[x]=-mu[i];

        }
        sum[i]=sum[i-1]+mu[i];
    }

}

LL solve(int a,int b,int k)
{
    LL ret=0;

    a=a/k;b=b/k;
    if(a>b) swap(a,b);
    int r;
    for(int l=1;l<=a;l=r+1)
    {
        r=min(a/(a/l),b/(b/l));
        ret=ret+1LL*(sum[r]-sum[l-1])*(a/l)*(b/l);
    }
    return ret;
}


int main()
{

    init();
    int a,b,c,d,k;
    int ncase;
    scanf("%d",&ncase);
    while(ncase--){

        scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);


    LL ret=solve(b,d,k)-solve(c-1,b,k)-solve(a-1,d,k)+solve(a-1,c-1,k);
    printf("%lld\n",ret);

    }
    return 0;
}





我的标签:做个有情怀的程序员。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值