bzoj 2301: [HAOI2011]Problem b (莫比乌斯反演)

题目链接:哆啦A梦传送门

题意:求 x=aby=cd[gcd(x,y)=k]\begin{aligned} \sum_{x=a}^{b} \sum_{y=c}^{d} [gcd(x,y)=k] \end{aligned}

看到这题显然上式等价于 :
x=ab/ky=cd/k[gcd(x,y)=1]\begin{aligned} \sum_{x=a}^{b/k} \sum_{y=c}^{d/k} [gcd(x,y)=1] \end{aligned}

这个我们在 bzoj 2190 做过求
x=1ny=1n[gcd(x,y)=1]\begin{aligned} \sum_{x=1}^{n} \sum_{y=1}^{n} [gcd(x,y)=1] \end{aligned},这里也类似。

我们容斥下就可以了 :
我们设 f(n,m)=x=1ny=1m[gcd(x,y)=1]f(n,m)=\begin{aligned} \sum_{x=1}^{n} \sum_{y=1}^{m} [gcd(x,y)=1] \end{aligned}

那么此题最终结果就为 :
sum=f(b,d)f(c1,b)f(a1,d)+f(a1,c1)sum=f(b,d)-f(c-1,b)-f(a-1,d)+f(a-1,c-1)

代码:

#include<bits/stdc++.h>

using namespace std;

typedef long long LL;

const int N=5e4+10;

int prime[N],tot,mu[N];
LL sum[N];

bool vis[N];

void init()
{
    mu[1]=sum[1]=1;

    for(int i=2;i<N;i++)
    {
        if(!vis[i]){
            prime[++tot]=i;
            mu[i]=-1;
        }
        for(int j=1;j<=tot&&i*prime[j]<N;j++){
            int x=i*prime[j];

            vis[x]=1;
            if(i%prime[j]==0){
                mu[x]=0;
                break;
            }
            mu[x]=-mu[i];

        }
        sum[i]=sum[i-1]+mu[i];
    }

}

LL solve(int a,int b,int k)
{
    LL ret=0;

    a=a/k;b=b/k;
    if(a>b) swap(a,b);
    int r;
    for(int l=1;l<=a;l=r+1)
    {
        r=min(a/(a/l),b/(b/l));
        ret=ret+1LL*(sum[r]-sum[l-1])*(a/l)*(b/l);
    }
    return ret;
}


int main()
{

    init();
    int a,b,c,d,k;
    int ncase;
    scanf("%d",&ncase);
    while(ncase--){

        scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);


    LL ret=solve(b,d,k)-solve(c-1,b,k)-solve(a-1,d,k)+solve(a-1,c-1,k);
    printf("%lld\n",ret);

    }
    return 0;
}





我的标签:做个有情怀的程序员。
发布了260 篇原创文章 · 获赞 39 · 访问量 3万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览