线段树原理

线段树

定义

百度百科定义:线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点
蓝书定义:线段树是一种基于分治思想的二叉树结构,用于在区间上进行信息统计

原理
  • 线段树的每个节点都代表一个区间
  • 线段树具有唯一的根节点,代表的区间是整个统计范围,如[1, N]
  • 线段树的每个叶节点都代表一个长度为1的元区间[x, x]
  • 对于每个内部节点[l, r],它的左子节点是[l, mid],右子节点是[mid + 1, r],其中 mid = l + r >> 1(下取整)

图示

线段树区间视角.png

线段树二叉树视角.png

由上面俩图展示了一颗区间长度为10的线段树
不难发现我们可以由一个struct数组来保存线段树的每个节点

struct Node
{
    int l, r;  //左右区间端点
    int date;  //线段树要维护的区间性质(一般为最大值,最小值,求和等)
}Tr[4 * N];  //N 为长度为1的区间节点的个数

一般我们Tr[]数组的长度要求不小于4 * N

原因(了解即可):由上面俩幅图我们不难发现,线段树的最后一层是不满的,有多余位置。而除去最后一层
后的线段树一定是一颗完全二叉树, 树的深度为 O ( l o g ) N O(log)N O(log)N
一共有N个长度为1的区间节点, N > 倒数第二层的节点个数
因为最后一层的节点个数为N的一颗满二叉树的所有节点个数 = N + N/2 + N/ 4 +.... + 2 + 1 = 2N - 1
所以我们的线段树去掉最后一层后节点的个数是严格小于2N - 1的(因为我们的线段树最后一层有空余位置)
而最后一层最多不会超过上一层的俩倍 即最坏情况下有 < 2*N 个节点
所以我们长度一般取4 * N即可


基本操作
  • pushup 由子节点更新父节点信息
  • pushdown 由子节点更新父节点信息 lazytag(懒标记)
  • build 由区间建立线段树
  • modify 修改某一个点(easy)或者区间(hard)
  • query 查询某一端区间信息

1.build操作

void build(int u, int l, int r)
{
    tr[u].l = l, tr[u].r = r;  //更新当前区间的左右端点
    if(l == r) return ;       //当前已是叶节点,返回
    int mid = l + r >> 1;        //取区间中点
    build(u << 1, l, mid);       //递归建立左子树
    build(u << 1 | 1, mid + 1, r); //递归建立右子树
    pushup(u);                  //一般在这里pushup(即更新区间所要维护的信息/属性)
}

2.query

int query(int u, int l, int r)
{
    if(tr[u].l >= l && tr[u].r <= r) return tr[u].v;  //当前查询区间[l,r]完全覆盖了u节点所代表的区间,直接返回
    int mid = tr[u].l + tr[u].r >> 1;
    int v = 0;
    if(l <= mid) v = query(u << 1, l, r);             //否则,若[l,r]和左子节点有重叠,递归访问左子节点
    if(r > mid) v = max(query(u << 1 | 1, l, r), v);  //否则,若[l,r]和右子节点有重叠,递归访问左子节点
    return v;
}

3. modify 操作和query类似,具体问题具体分析如何修改区间信息/属性
4. pushup 直接看模板题更好理解
5. pushdown 直接看模板提更好理解

题目链接 AcWing1275. 最大数
第一个模板题,用线段树维护区间最大值, 只需用到pushup操作,暂时没用到pushdown
题目思路

1.我们可以提前把m个数给填好
2.因此我们的第一个操作 在第n个数后面加一个数x == 修改第n + 1个数
3.第二个操作即 查询[n - l + 1, n]内的最大值

时间复杂度
#include <iostream>
#include <algorithm>
#include <cstring>

using namespace std;

const int N = 2e5 + 10;

int m, p;
struct Node
{
    int l, r;
    int v;               //[l,r]区间内最大的数
}tr[N * 4];

void pushup(int u)     //由子节点信息更新父节点信息
{
    tr[u].v = max(tr[u << 1].v, tr[u << 1 | 1].v);   //父节点的最大值 = max(左子节点的最大值,右子节点的最大值)
}

void build(int u, int l, int r)  //build基本操作
{
    tr[u] = {l, r};
    if(l == r) return ;
    int mid = l + r >> 1;
    build(u << 1, l, mid);
    build(u << 1 | 1, mid + 1, r);
}

int query(int u, int l, int r)  //query基本操作
{
    if(tr[u].l >= l && tr[u].r <= r) return tr[u].v;    //当前区间[l, r]已经覆盖u节点区间,直接返回
    int mid = tr[u].l + tr[u].r >> 1;
    int v = 0;
    if(l <= mid) v = query(u << 1, l, r);           //[l, r]和左子节点有重叠,递归查询左子节点
    if(r > mid) v = max(query(u << 1 | 1, l, r), v); //[l, r]和右子节点有重叠,递归查询右子节点
    return v;
}

void modify(int u, int x, int v)
{
    if(tr[u].l == x && tr[u].r == x) tr[u].v = v; //当前节点已是叶节点,直接修改
    else
    {
        int mid = tr[u].l + tr[u].r >> 1;
        if(x <= mid) modify(u << 1, x, v);     
        else modify(u << 1 | 1, x, v);
        pushup(u);        //不要忘记回溯更新父节点信息, 因为子节点已经被修改,所以父节点信息可能会改变
    }
}

int main()
{
    int n = 0, last = 0;
    scanf("%d%d", &m, &p);
    build(1, 1, m);        //建立一个长度为m的线段树
    int x;
    char op[2];
    while(m -- )
    {
        scanf("%s%d", op, &x);
        if(op[0] == 'Q')
        {
            last = query(1, n - x + 1, n);
            printf("%d\n", last);
        }
        else
        {
            modify(1, n + 1, (last + x) % p);
            n ++;
        }
    }
    return 0;
}

2021.8.17 持续更新中 还没学完

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值