机器学习基础(一)——线性回归

本文深入探讨了机器学习中的线性回归,包括符号定义、假设函数、代价函数的推导以及梯度下降法的求解过程。通过对吴恩达《机器学习》课程的理解,详细阐述了线性回归模型的构建,并提供了实验代码和结果。
摘要由CSDN通过智能技术生成

机器学习——线性回归

本文主要是对 线性回归中的部分公式进行推导以及个人对该问题的理解,具体的理论知识可以参考 吴恩达 的《机器学习》 视频。

1. 符号以及定义

  • 样本矩阵 X = [ x 1 , x 2 , ⋯   , x n ] T ∈ R n × d X = [x_1,x_2,\cdots,x_n]^T \in R^{ n\times d} X=[x1,x2,,xn]TRn×d , x i x_i xi 表示第 i 个样本。其中每一行是一个样本,每一列表示一个特征,也可以说是一个影响因素。
  • 标签矩阵 Y = [ y 1 , y 2 , ⋯   , y n ] T ∈ { 0 , 1 } n Y = [y_1,y_2,\cdots,y_n]^T \in \{0,1\}^ n Y=[y1,y2,,yn]T{ 0,1}n
  • 权重向量 θ ∈ R d \theta \in R^d θRd

2. 公式以及推导

2.1 假设函数

H θ ( x i ) = x i θ = x i 0 θ 0 + x i 1 θ 1 + x i 2 θ 2 + ⋯ + x i d θ d (1) \begin{array}{l}H_{\theta}(x_i)= x_i\theta \tag{1} \\ = x_{i0}\theta_0 + x_{i1}\theta_1+ x_{i2}\theta_2+ \cdots+ x_{id}\theta_d\end{array} Hθ(xi)=xiθ=xi0θ0+xi1θ1+xi2θ2++xidθd(1)

  • 等式1的含义: 假设 影响因素 与 预测值之间存在线性关系,其中系数为 θ \theta θ, 偏差项为 b b b.
  • x i j x_{ij} xij: 表示 第 i个样本中的第 j 个影响因素。
  • 通过(1)的展开式可以看出, θ j \theta_j θj 表示的第 j个影响因素的重要程度

2.2 代价函数

代价函数的理解:

由于我们以及在 2.1 中假设了 影响因素 与 预测值之间存在 H θ ( x i ) H_\theta(x_i)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值