机器学习算法基础——多元线性回归

多元线性回归和一元线性回归基本一致,只介绍sklearn的方法实现:

import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.linear_model import LinearRegression

data=np.genfromtxt('Delivery.csv',delimiter=',')
x_data=data[:,:-1]#取前n-1位
y_data=data[:,-1]#取最后一位

model=LinearRegression()#建立线性回归模型
model.fit(x_data,y_data)

print("[w0]=",model.intercept_)#截距w0
print("[w1,w2]=",model.coef_)#系数w1,w2

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

snowy2002

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值