RoI: Region of interest也称作Region Proposal
指目标检测one-stage和two-stage差的那部分,具体是说现在img中找到所有可能的存在object的区域
后续再对这些区域进行判别识别存在目标object
对于不需要预生成RP的Detection算法而言,算法只需要完成三个任务:
1特征抽取
2分类
3定位回归
对于有预生成RP的Detection算法而言,算法要完成的主要有四个任务:
1特征抽取
2生成RP
3分类
4定位回归
RPN(Region Proposal Network)
RPN是Faster RCNN的一部分
输入:图片
输出:可能包含目标object的区域(object proposal)
Faster RCNN
每个feature map上的点产生9个anchor boxs:
3种scale(尺度,个人理解为框的大小) 3个aspect ratios(横纵比)
1x1 conv:保持feature map比例不变
2k:cls判断有无object(但不管是哪种object)
4k:reg给出object的四个坐标(微调了anchor box的大概尺寸)
处理后会删除一部分存在object概率低的anchor box,留下概率较高的。但是也可能存在一些高度重合的anchor box,此时采用non-maximum suppression(非最大值抑制)方法
输入给RPN之前的feature map要保留下来,并且和RPN输出的大概率region组合起来
RoIHead网络结构图
RoI Pooling 是一种特殊的Pooling操作,给定一张图片的Feature map (512×H/16×W/16) ,和128个候选区域的座标(128×4),RoI Pooling将这些区域统一下采样到 (512×7×7),就得到了128×512×7×7的向量。可以看成是一个batch-size=128,通道数为512,7×7的feature map。
参考链接:https://zhuanlan.zhihu.com/p/32404424