大数据平台数据采集方案设计
本文详细介绍大数据平台的数据采集方案,包括日志采集和埋点上报两个主要部分,以及相关的技术选型、架构设计和最佳实践。
1. 数据采集概述
1.1 采集类型
- 日志数据采集
- 埋点数据采集
- 业务数据采集
- 系统监控数据
- 第三方数据接入
1.2 采集原则
- 实时性:保证数据及时采集
- 可靠性:确保数据不丢失
- 完整性:保证数据质量
- 扩展性:支持多种数据源
- 安全性:保护敏感数据
2. 日志采集方案
2.1 采集架构
[应用服务器] -> [日志文件] -> [采集Agent] -> [消息队列] -> [数据处理] -> [数据存储]
2.2 技术选型
2.2.1 采集工具
- Filebeat:轻量级日志采集
- Flume:分布式日志采集
- Logstash:日志处理管道
- Fluentd:统一日志层
- Logtail:阿里云日志采集
2.2.2 消息队列
- Kafka:高吞吐消息队列
- RocketMQ:分布式消息队列
- Pulsar:云原生消息队列
- RabbitMQ:传统消息队列
2.3 日志分类
- 应用日志
- 系统日志
- 安全日志
- 审计日志
- 错误日志
2.4 采集策略
- 实时采集
- 批量采集
- 增量采集
- 全量采集
- 定时采集
3. 埋点采集方案
3.1 埋点类型
- 页面访问
- 用户行为
- 业务操作
- 性能监控
- 错误追踪
3.2 埋点方式
3.2.1 客户端埋点
- 代码埋点
- 可视化埋点
- 无埋点
- 全埋点
- 自定义埋点
3.2.2 服务端埋点
- API调用
- 数据库变更
- 消息队列
- 定时任务
- 系统事件
3.3 埋点规范
- 命名规范

最低0.47元/天 解锁文章
41

被折叠的 条评论
为什么被折叠?



