论文笔记(3):Blessing of Dimensionality: High-dimensionality Feature and Its Efficient Compression

论文:Blessing of Dimensionality: High-dimensionality Feature and Its Efficient Compression for Face Verification

本文提出了高维度的特征有利于性能提升的观点。利用增加人脸特征点提取的数量,和采样多尺度图像金字塔,来对传统人脸特征(LBP, Gabor, HOG, SIFT)实现高维度版本。实验证明对传统特征增加维度之后,人脸验证的性能得到有效提高。本文还同时提出了一种对高维度进行压缩的方法,使特征保持紧凑而包含图像的重要信息。

论文地址:
HD-LBP

参考博客:
子空间模式识别
HD-LBP 学习笔记
史上最好的LDA( 线性判别分析)教程
线性判别分析LDA
LBP(局部二值模式)特征提取原理

主要内容

1 High-dimensional Feature is Neccesary

1.1. Constructing high-dimensional feature

(1) Dense Landmarks.
   用人脸对齐技术对人脸图像提取出27个特征点,分别位于眼、眉、鼻、嘴等位置。这对于后续特征的提取起关键作用。
(2) Multi-Scale.
   对标准化(基于五个基本特征点的相似性转换)后的图像建立图像金字塔,本文建立五层,即五个尺度。每一层的每一个特征点裁剪出固定长度的图像patch。每一个patch划分成4x4 cells,每一个cell由某种类型的局部描述子表示(例如:LBP, Gabor, SIFT, HOG)

   下图是以上两个步骤的示图:

Landmarks Extraction and Multi-Scale Pyramid
3.2. High-dimensional Feature is Necessary
   本文将提出的高维特征构建应用在了五种不同的局部描述符,来进行评估,分别是LBP, Gabor, SIFT, HOG, LE。维度从1K增加到了100K。结果如下:

在这里插入图片描述

2. Rotated Sparse Regression based Efficient Compression

   虽然高维特征能提高性能,但也带来了高成本的问题。本文提出了一个学习稀疏线性映射的方法,将高维特征映射到一个具有判别性的子空间中,减少计算和存储成本。

Step-1 : 采用PCA来压缩原始的高维特征,然后用监督式子空间学习方法比如线性判别分析LDA或Joint-Bayes(本文选用)来提取出具有判别性的信息࿰

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值