ESRGAN

ESRGAN理解

《ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks》

准备

这篇文章是SRGAN的改进,所以要先读懂SRGAN才行。推荐原文《Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network》和这个复现的代码《一文掌握图像超分辨率重建(算法原理、Pytorch实现)——含完整代码和数据》细致的讲解。
SRGAN的特点在于:
1、网络结构使用了GAN的方式做超分,图片很详细地展示了网络结构
在这里插入图片描述
2、损失函数引入了感知损失这一概念。计算VGG的特征作为损失函数的输入,注重特征而不是逐个像元求差异。

论文原理

ESRGAN对SRGAN进行了四点改进。(论文写的改进了三个方面,但是分了4个小标题,所以不要纠结这个)
1、生成器网络结构改进:对于生成器G,删除BN层和替换残差块
首先删除了所有的BN层。论文给出了解释:在面向PSNR(Peak Signal-to-Noise Ratio)的任务中,BN层表现很差,因为训练集和测试集的分布不一致,而且凭经验看,在关于GAN的深层网络中,BN会带来一些伪影。去除之后,可以提升性能和降低计算复杂度。
在这里插入图片描述
然后把残差块替换为Residual in Residual Dense Block (RRDB),这是残差套残差的一个结构,如图所示。而且使用了一个权重β来缩小dense block,还使用一个较小的初始方差

在这里插入图片描述
2、判别器改进:
借鉴了Relativistic GAN的思想进行改进,传统的GAN计算loss时,传统GAN的判别器计算真实数据与1之间的loss,计算生成数据与0之间的loss。这里改为:直接计算真实数据与生成数据之间的loss。嗯,这样想应该是对的,超分任务中,要的是超分结果与原图相近,而不是超分结果与1相近。0和1作为中间商,阻碍了信息的传播(细思极恐,脑洞大开~~MLP里面是不是也可以把0和1去掉,直降让数据之间互相沟通)。
在这里插入图片描述

具体损失函数:
判别器:
在这里插入图片描述
生成器:
在这里插入图片描述

可以看到,主要是比较的两个图片之间的差异。
3、感性损失
类似于SRGAN里面使用VGG求特征的损失。与之不同的是,本文提出,使用的特征应在VGG的激活层之前。而且又加了一个content loss。所以,总的loss应该分为三个方面:
在这里插入图片描述

4、网络插值
先训练一个基于PSNR的网络,再在该网络的基础上finetune一个GAN网络,最后把这两个网络插值。

实验

效果自然是很好的。
作者做了四组消融实验:
1、BN层移除。这个实验证明了,在移除BN之后,性能并未降低,但是节省计算资源。
2、在激活函数前使用感知损失。发现这样做会生成更清晰的边界和纹理。
3、RaGAN,有用
4、RRDB。效果好

代码待补充。。。。

### 使用 ESRGAN 进行图像超分辨率处理 在 ComfyUI 中集成了多种用于图像处理的功能模块,其中包括支持使用 ESRGAN 模型进行图像的超分辨率处理[^1]。为了实现这一功能,用户可以按照如下方式操作: #### 准备环境与安装依赖库 确保已经正确部署并运行了 ComfyUI 平台,并且具备网络连接以便下载必要的预训练模型文件。 #### 加载 ESRGAN 模型 进入 ComfyUI 的插件管理界面,找到适用于增强图像清晰度的 ESRGAN 插件选项。通常情况下,默认配置会自动加载官方推荐版本的 ESRGAN 模型;如果需要特定版本或其他变体,则可以通过自定义路径指定本地存储的权重文件位置。 #### 构建工作流程 创建一个新的工作流或编辑现有的工作流来加入 ESRGAN 处理步骤。这一步骤涉及设置输入源(待放大的低分辨率图像)、选择合适的 ESRGAN 预处理器和后处理器参数、设定输出目标等环节。对于希望获得更佳效果的情况,还可以考虑调整一些高级选项,比如启用多尺度融合技术或多帧合成策略以提升最终结果的质量[^3]。 ```python from comfyui_allor import load_esrgan_model, upscale_image # 假设已有一个名为low_res_img的对象表示要放大的原始图片数据 model_path = 'path/to/esrgan/model.pth' # 如果有特殊需求可替换为具体路径 esrgan_model = load_esrgan_model(model_path) high_res_img = upscale_image(low_res_img, esrgan_model) ``` 上述代码片段展示了如何调用 ComfyUI 提供的相关 API 来完成一次基本的 ESRGAN 放大过程。实际应用时应根据具体的开发文档进一步完善细节部分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值