卷积层 convolutional networks
卷积层的滤波器(filter)(或称:卷积核(kernel)),假设其尺寸是 5 × 5 × 3 5 \times 5 \times 3 5×5×3(宽高都是5像素,深度是3)。在前向传播的时候,滤波器在输入数据的宽度和高度上滑动(更精确地说是卷积),然后计算整个滤波器和输入数据任一处的内积。
当滤波器沿着输入数据的宽度和高度滑过后,会生成一个2维的激活图(activation map),激活图给出了在每个空间位置处滤波器的反应。直观地来说,网络会让滤波器学习到当它看到某些类型的视觉特征时就激活,具体的视觉特征可能是某些方位上的边界,或者某些颜色的斑点,甚至可以是网络更高层上的蜂巢状或者车轮状图案。
卷积核
卷积核的4个超参数:
-
滤波器的数量 K K K
-
滤波器的空间尺寸 F F F
-
步长 S S S
-
零填充数量 P P P
输入数据体的尺寸为 :
W
1
×
H
1
×
D
1
W_1 \times H_1 \times D_1
W1×H1×D1
输出数据体的尺寸为:
W
2
×
H
2
×
D
2
W_2 \times H_2 \times D_2
W2×H2×D2
其中:
D
2
=
K
D_2 = K
D2=K
W
2
=
(
W
1
−
F
+
2
P
)
/
S
+
1
W_2 = (W_1-F+2P)/S+1
W2=(W1−F+2P)/S+1
H
2
=
(
H
1
−
F
+
2
P
)
/
S
+
1
H_2 = (H_1-F+2P)/S+1
H2=(H1−F+2P)/S+1
卷积过程
卷积效果
卷积的作用主要是:通过卷积运算,可以使原信号特征增强,并且降低噪音,提取图像的特征。
图像在不同卷积核上进行卷积之后的效果图如下: