51nod 3144超级购物(概率和期望)

题目链接

题目大意

n ( n ≤ 20 ) n(n \le20) nn20个人去买东西,给出他们每个人买东西的概率 p i p_i pi,已知有 r r r个人买了东西,求每个人买东西的概率是多少。

解题思路

思路来源于:这位dalao他的这题题解
前置芝士:已知当事件 B B B发生时事件 A A A发生的概率如下图公式所示
在这里插入图片描述

在这题中,事件 B B B为有 r r r个人买了东西,事件 A A A为第 i i i个人买了东西。由此可以得知最后这个人买东西的概率为:
有 r 个 人 买 东 西 且 当 前 这 个 人 买 了 东 西 时 的 概 率 共 有 r 个 人 买 东 西 的 概 率 \frac{有r个人买东西且当前这个人买了东西时的概率}{共有r个人买东西的概率} r西r西西
因此我们可以用dp,先搜出 n n n个人中 r r r个人购物的概率,再依次求出有 r r r个人购物且第 i i i个人买东西时的概率,再套入公式,即可求出每个人购物的概率。
f i , j f_{i,j} fi,j为前 i i i个人中有 j j j个人买东西,由此可推出状态转移方程:
f i , j = { f i − 1 , j 第 i 个人是一定要买东西的那个人 f i − 1 , j ∗ ( 1 − p i ) + p i ∗ f i − 1 , j − 1 这个人不一定买东西 f_{i,j}= \begin{cases} f_{i-1,j} & \text{第$i$个人是一定要买东西的那个人}\\ f_{i-1,j}*(1-p_i)+p_i*f_{i-1,j-1} & \text{这个人不一定买东西}\\ \end{cases} fi,j={fi1,jfi1,j(1pi)+pifi1,j1i个人是一定要买东西的那个人这个人不一定买东西
这个人不一定买东西时,有两种可能,第一种为这个人不购物,所以 f i , j = f i − 1 , j ∗ ( 1 − p i ) f_{i,j}=f_{i-1,j}*(1-p_i) fi,j=fi1,j(1pi)(因为前 i − 1 i-1 i1个人中已经有 j j j个人购物了,所以乘上这个人不购物的概率 ( 1 − p i ) (1-p_i) (1pi));第二种为这个人购物,所以 f i , j = f i − 1 , j − 1 ∗ p i f_{i,j}=f_{i-1,j-1}*p_i fi,j=fi1,j1pi(因为前 i − 1 i-1 i1人中只有 j − 1 j-1 j1人购物,所以这个人只有购物才能满足有 j j j个人买东西,所以乘上这个人购物的概率)。

代码

#include<bits/stdc++.h>
using namespace std;
int n,r;
double p[25],f[105][105];
double work(int x)//第x个人肯定购物
{
	f[0][0]=1;//初始化
	for(int i=1;i<=n;i++)
	{
		if(i==x)//如果这个人肯定购物
		{
			for(int j=0;j<=min(r,i);j++) f[i][j]=f[i-1][j];//由于肯定购物所以概率不变
			continue;
		}
		for(int j=0;j<=min(i,r);j++)//因为不能出现购物的人比当前的人多
		{
			f[i][j]=(1-p[i])*f[i-1][j];//第一种可能(见解题思路)
			if(j!=0) f[i][j]+=p[i]*f[i-1][j-1];//第二种可能(见解题思路)j!=0是因为j为0时数组访问到j-1会re
		}
	}
	if(x==0) return f[n][r];//当没有锁定一个人肯定购物时每个人购物的概率(n个人中r个人购物的概率)
	else return f[n][r-1];//因为这个人肯定购物,占了一个名额,所以要减去ta
}
int main()
{
	cin>>n>>r;
	for(int i=1;i<=n;i++)
	{
		cin>>p[i];
		p[i]/=100;
	}
	
	double k=work(0);//求出n个人中r个人购物的概率
	for(int i=1;i<=n;i++)
	{
		printf("%.6lf ",work(i)*p[i]/k);//work(i)*p[i]->肯定购物的那个人乘上ta购物的概率,套上公式
	}
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值