高等代数--线性方程组

本文是《高等代数》第三版关于线性方程组的总结,涵盖消元法的基本操作和初等变换,讨论了线性方程组的解、n维向量空间、线性相关性以及矩阵的秩。通过消元法将方程组化为阶梯型,证明了方程组解的存在性和结构。同时,阐述了线性无关向量组的极大线性无关组的概念及其重要性质,并定义了矩阵的秩,解释了行列秩相等的定理。此外,介绍了齐次和非齐次线性方程组的解的结构和性质。
摘要由CSDN通过智能技术生成

高等代数–线性方程组

声明: 本篇文章内容主要对《高等代数》第三版第三章内容的总结,复习

消元法

明确基础名词的含义: 未知量,方程个数,系数,常数项,方程的解,解集合,同解,一般解,自由未知量,系数矩阵,增广矩阵,行向量,列向量,n维单位向量,导出组。

消元法实际上是反复的对方程组进行如下的三种变换:
1.用一非零的数乘某一方程;
2把一个方程的倍数加到另一个方程;
3.互换两个方程的位置;

定义1: 变换1,2,3称为线性方程组的初等变换
初等变换总是把方程组变成同解的方程组
我们做初等变换的目的总是为了得到一个阶梯型方程组。

在这里插入图片描述
证明: 该定理的证明是根据初等变换将方程组化为阶梯型方程组,可以得到方程的个数必然小于未知量的个数,所以必有非零解。
注意: 这个定理虽然看起来很浅显,但是本章后面的绝大多数定理都是根据此定理得来的。

n维向量空间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值