高等代数–线性方程组
声明: 本篇文章内容主要对《高等代数》第三版第三章内容的总结,复习
消元法
明确基础名词的含义: 未知量,方程个数,系数,常数项,方程的解,解集合,同解,一般解,自由未知量,系数矩阵,增广矩阵,行向量,列向量,n维单位向量,导出组。
消元法实际上是反复的对方程组进行如下的三种变换:
1.用一非零的数乘某一方程;
2把一个方程的倍数加到另一个方程;
3.互换两个方程的位置;
定义1: 变换1,2,3称为线性方程组的初等变换。
初等变换总是把方程组变成同解的方程组。
我们做初等变换的目的总是为了得到一个阶梯型方程组。
证明: 该定理的证明是根据初等变换将方程组化为阶梯型方程组,可以得到方程的个数必然小于未知量的个数,所以必有非零解。
注意: 这个定理虽然看起来很浅显,但是本章后面的绝大多数定理都是根据此定理得来的。