问题 1:RAGOps 堆栈有哪些不同层?
RAGOps(检索增强生成操作)堆栈包括多个层,每个层都发挥着关键作用,以确保系统的功能性和可扩展性:
- 数据层:管理数据摄入、预处理、索引编制和存储,以供检索之用。
- 模型层:托管检索模型和生成模型以执行核心任务。
- 部署层:确保模型可访问、可扩展,并针对延迟进行优化。
- 编排层:协调系统组件之间的交互,简化工作流程。
- 增强层:添加缓存、个性化和监控等功能,以提高系统效率。
- 安全层:保护数据、模型和工作流程免受潜在威胁,并确保合规性。
问题 2:数据层如何为 RAG 系统做出贡献?
数据层通过管理所有与数据相关的任务,在 RAG 系统的有效性中发挥关键作用,包括:
- 数据摄入和预处理:收集和清理数据,为索引和嵌入做准备。
- 索引编制:将数据组织到向量数据库或搜索索引中,以实现高效检索。
- 存储:利用可扩展数据库(如 Pinecone、Weaviate 或 Elasticsearch)进行优化访问。
- 质量管理:确保数据完整性和相关性,以提高模型性能。
- 动态更新:支持实时更新,以反映最新的数据变化。
问题 3:模型层的组件有哪些?
模型层包括检索和生成任务所需的核心元素:
- 生成模型:使用像 GPT 这样的大语言模型来生成相关且特定于上下文的响应。
- 检索模型:采用基于嵌入的模型(如 Sentence Transformers)进行准确的信息检索。
- 融合技术:集成密集检索和稀疏检索方法以提高性能。
- 微调:通过迁移学习为特定领域或用例定制模型。
- 评估工具:使用 BLEU、ROUGE 或特定任务指标评估模型性能。
问题 4:RAG 系统有哪些模型部署选项示例?
RAG 系统中的模型部署可以通过多种方法实现:
- 云部署:像 AWS SageMaker、Google Vertex AI 或 Azure ML 这样的平台提供可扩展解决方案。
- 本地部署:适用于对数据隐私要求严格的行业。
- 边缘部署:通过在边缘设备上部署模型实现低延迟推理。
- 容器化部署:使用 Docker 或 Kubernetes 构建模块化和可扩