DeepSeek-R1 蒸馏模型及如何用 Ollama 在本地运行DeepSeek-R1

在人工智能飞速发展的领域中,大型语言模型(LLMs)的出现可谓是一项重大变革。在这些模型里,DeepSeek - R1 及其蒸馏模型备受瞩目,它们融合了独特的能力与高可用性。今天我们一起聊一下 DeepSeek - R1 蒸馏模型究竟是什么,它们的工作原理、应用场景,并提供一份使用 Ollama 在本地运行 DeepSeek R1 的详细步骤指南。

什么是 DeepSeek - R1 蒸馏模型?

DeepSeek - R1 蒸馏模型(模型蒸馏(Model Distillation):AI模型小型化与高效化之道)是强大的 DeepSeek - R1 人工智能系统的精简高效版本。DeepSeek - R1 作为一个高性能人工智能,擅长处理复杂任务,如解答复杂数学问题、精确编写代码以及回答棘手的问题,在技术领域引发了广泛关注,常被拿来与 OpenAI 等行业巨头的产品相提并论。

这些蒸馏模型属于人工智能领域模型蒸馏趋势的一部分。模型蒸馏是一种让大型先进的人工智能系统将知识传授给更小、更简单模型的技术。这一过程就像是把大模型的智慧浓缩到小模型中,使得小模型虽然体积变小了,但仍保留了大模型的大部分智能,成为可以在普通计算机甚至智能手机上运行的 “迷你大脑” 。通过这种方式,尖端的人工智能技术不再只为大型科技公司所专有,而是能够惠及大众。

以 DeepSeek - R1 - Distill - Qwen - 32B 为例,它从庞大的 DeepSeek - R1 模型中汲取知识,在保持相对较小规模的同时,展现出强大的性能,让更多用户能够轻松使用先进的人工智能技术,推动了人工智能在各个领域的普及和应用。

DeepSeek - R1 蒸馏模型的优势

成本效益高

运行完整的 DeepSeek - R1 模型(拥有 6710 亿个参数)需要昂贵的服务器支持,这对于许多个人和小型机构来说是难以承受的。而蒸馏版本(

### 部署 DeepSeek-R1 蒸馏模型 #### 所需环境准备 为了确保 DeepSeek-R1 模型能够在本地环境中顺利运行,建议先安装并配置好 Python 环境以及必要的库。对于拥有较强推理能力的 PC 本地部署来说,可以选择较大规模的模型版本如 1.5b, 7b, 8b 或者 14b 版本[^1]。 #### 安装依赖项 通常情况下,官方文档会提供详细的依赖列表。一般而言,这可能涉及到 PyTorch、Transformers 库以及其他辅助工具包。可以通过 pip 工具来快速完成这些软件包的安装: ```bash pip install torch transformers datasets ``` #### 获取模型 根据描述中的指导,获取指定型号的方法如下所示: ```bash ollama run deepseek -r1:8b ``` 这条指令将会自动拉取所需的 DeepSeek-R1 模型及其对应的权重文件至本地存储位置。 #### 设置配置文件 创建一个新的 JSON 文件用于保存模型初始化时所需要的参数设置。下面是一个简单的例子: ```json { "model": "deepseek-r1", "version": "8b", "device": "cuda", // 如果 GPU 可用则设为 cuda 否则 cpu "batch_size": 8, "max_length": 512 } ``` 该配置指定了所使用的特定版本(此处假设选择了 `8b`),同时也定义了一些基本选项比如批处理大小和最大输入长度等超参调整空间。 #### 运行服务端口监听脚本 编写一段简短的服务启动代码片段,用来加载上述配置并将模型实例化后开启 HTTP API 接口供外部调用查询: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import json from flask import Flask, request, jsonify app = Flask(__name__) with open('config.json', 'r') as f: config = json.load(f) tokenizer = AutoTokenizer.from_pretrained(config["model"]) model = AutoModelForCausalLM.from_pretrained(config["model"]).to(config['device']) @app.route('/predict', methods=['POST']) def predict(): input_text = request.json.get("text") inputs = tokenizer(input_text, return_tensors="pt").input_ids.to(config['device']) outputs = model.generate(inputs) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return jsonify({"output": result}) if __name__ == "__main__": app.run(host='0.0.0.0', port=5000) ``` 这段程序利用了 Flask 微框架搭建了一个简易 web server 来接收 POST 请求,并返回由给定提示词生成的结果字符串。注意这里假定读者已经具备一定的编程基础以便理解以上实现细节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值